Given an expression
such as expression = "e + 8 - a + 5"
and an evaluation map such as {"e": 1}
(given in terms of evalvars = ["e"]
and evalints = [1]
), return a list of tokens representing the simplified expression, such as ["-1*a","14"]
- An expression alternates chunks and symbols, with a space separating each chunk and symbol.
- A chunk is either an expression in parentheses, a variable, or a non-negative integer.
- A variable is a string of lowercase letters (not including digits.) Note that variables can be multiple letters, and note that variables never have a leading coefficient or unary operator like
"2x"
or"-x"
.
Expressions are evaluated in the usual order: brackets first, then multiplication, then addition and subtraction. For example, expression = "1 + 2 * 3"
has an answer of ["7"]
.
The format of the output is as follows:
- For each term of free variables with non-zero coefficient, we write the free variables within a term in sorted order lexicographically. For example, we would never write a term like
"b*a*c"
, only"a*b*c"
. - Terms have degree equal to the number of free variables being multiplied, counting multiplicity. (For example,
"a*a*b*c"
has degree 4.) We write the largest degree terms of our answer first, breaking ties by lexicographic order ignoring the leading coefficient of the term. - The leading coefficient of the term is placed directly to the left with an asterisk separating it from the variables (if they exist.) A leading coefficient of 1 is still printed.
- An example of a well formatted answer is
["-2*a*a*a", "3*a*a*b", "3*b*b", "4*a", "5*c", "-6"]
- Terms (including constant terms) with coefficient 0 are not included. For example, an expression of "0" has an output of [].
Examples:
Input: expression = "e + 8 - a + 5", evalvars = ["e"], evalints = [1] Output: ["-1*a","14"] Input: expression = "e - 8 + temperature - pressure", evalvars = ["e", "temperature"], evalints = [1, 12] Output: ["-1*pressure","5"] Input: expression = "(e + 8) * (e - 8)", evalvars = [], evalints = [] Output: ["1*e*e","-64"] Input: expression = "7 - 7", evalvars = [], evalints = [] Output: [] Input: expression = "a * b * c + b * a * c * 4", evalvars = [], evalints = [] Output: ["5*a*b*c"] Input: expression = "((a - b) * (b - c) + (c - a)) * ((a - b) + (b - c) * (c - a))", evalvars = [], evalints = [] Output: ["-1*a*a*b*b","2*a*a*b*c","-1*a*a*c*c","1*a*b*b*b","-1*a*b*b*c","-1*a*b*c*c","1*a*c*c*c","-1*b*b*b*c","2*b*b*c*c","-1*b*c*c*c","2*a*a*b","-2*a*a*c","-2*a*b*b","2*a*c*c","1*b*b*b","-1*b*b*c","1*b*c*c","-1*c*c*c","-1*a*a","1*a*b","1*a*c","-1*b*c"]
Note:
expression
will have length in range[1, 250]
.evalvars, evalints
will have equal lengths in range[0, 100]
.
Companies:
Intuit, Pinterest, Roblox
Related Topics:
Hash Table, String, Stack
Similar Questions:
// OJ: https://leetcode.com/problems/basic-calculator-iv
// Author: github.com/lzl124631x
class Solution {
private:
vector<string> tokenize(string &expression) {
vector<string> tokens;
for (int i = 0; i < expression.size();) {
string token;
if (isalnum(expression[i])) {
while (i < expression.size() && isalnum(expression[i])) {
token += expression[i++];
}
} else token += expression[i++];
tokens.push_back(token);
while (i < expression.size() && expression[i] == ' ') ++i;
}
return tokens;
}
vector<string> inject(vector<string> &tokens, unordered_map<string, string> &m) {
for (auto &token : tokens) {
if (m.find(token) != m.end()) token = m[token];
}
return tokens;
}
vector<string> toRPN(vector<string> &tokens) {
stack<string> ops;
vector<string> ans;
for (auto &token : tokens) {
switch(token.back()) {
case '+':
case '-':
while (ops.size() && ops.top() != "(") {
ans.push_back(ops.top());
ops.pop();
}
ops.push(token);
break;
case '*':
if (ops.size() && ops.top() == "*") {
ans.push_back(ops.top());
ops.pop();
}
ops.push(token);
break;
case '(':
ops.push(token);
break;
case ')':
while (ops.size() && ops.top() != "(") {
ans.push_back(ops.top());
ops.pop();
}
if (ops.size()) ops.pop();
break;
default:
ans.push_back(token);
break;
}
}
while (ops.size()) {
ans.push_back(ops.top());
ops.pop();
}
return ans;
}
vector<string> splitSymbols(string exp) {
istringstream s(exp);
vector<string> ans;
string symbol;
while (getline(s, symbol, '*')) ans.push_back(symbol);
return ans;
}
vector<string> evaluate(vector<string> &tokens) {
stack<map<string, int>> s;
for (auto &token : tokens) {
switch(token.back()) {
case '+':
case '-': {
int sign = token[0] == '+' ? 1 : -1;
auto b = s.top(); s.pop();
auto a = s.top(); s.pop();
map<string, int> m;
for (auto &p : a) {
m[p.first] += p.second;
}
for (auto &p : b) {
m[p.first] += sign * p.second;
}
s.push(m);
break;
}
case '*': {
auto b = s.top(); s.pop();
auto a = s.top(); s.pop();
map<string, int> m;
for (auto &p : a) {
auto symbol1 = splitSymbols(p.first);
for (auto &q : b) {
istringstream sb(q.first);
auto symbol2 = splitSymbols(q.first);
string symbol;
if (symbol1.size() == 1 && symbol1[0] == "1") {
symbol = q.first;
} else if (symbol2.size() == 1 && symbol2[0] == "1") {
symbol = p.first;
} else {
for (int i = 0, j = 0; i < symbol1.size() || j < symbol2.size();) {
if (symbol.size()) symbol += "*";
if (i >= symbol1.size()) {
symbol += symbol2[j++];
} else if (j >= symbol2.size()) {
symbol += symbol1[i++];
} else if (symbol1[i] < symbol2[j]){
symbol += symbol1[i++];
} else {
symbol += symbol2[j++];
}
}
}
m[symbol] += p.second * q.second;
}
}
s.push(m);
break;
}
default: {
map<string, int> m;
if (isdigit(token.back())) {
m["1"] = stoi(token);
} else {
m[token] = 1;
}
s.push(m);
break;
}
}
}
vector<string> ans;
for (auto &p : s.top()) {
if (!p.second) continue;
ans.push_back(to_string(p.second) + (p.first == "1" ? "" : "*" + p.first));
}
stable_sort(ans.begin(), ans.end(), [&](string a, string b) {
return count(a.begin(), a.end(), '*') > count(b.begin(), b.end(), '*');
});
return ans;
}
public:
vector<string> basicCalculatorIV(string expression, vector<string>& evalvars, vector<int>& evalints) {
unordered_map<string, string> m;
for (int i = 0; i < evalvars.size(); ++i) {
m[evalvars[i]] = to_string(evalints[i]);
}
auto tokens = tokenize(expression);
tokens = inject(tokens, m);
tokens = toRPN(tokens);
tokens = evaluate(tokens);
return tokens;
}
};