You are given an m x n
integer array grid
where grid[i][j]
could be:
1
representing the starting square. There is exactly one starting square.2
representing the ending square. There is exactly one ending square.0
representing empty squares we can walk over.-1
representing obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
Example 1:
Input: grid = [[1,0,0,0],[0,0,0,0],[0,0,2,-1]] Output: 2 Explanation: We have the following two paths: 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2) 2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: grid = [[1,0,0,0],[0,0,0,0],[0,0,0,2]] Output: 4 Explanation: We have the following four paths: 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3) 2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3) 3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3) 4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input: grid = [[0,1],[2,0]] Output: 0 Explanation: There is no path that walks over every empty square exactly once. Note that the starting and ending square can be anywhere in the grid.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 20
1 <= m * n <= 20
-1 <= grid[i][j] <= 2
- There is exactly one starting cell and one ending cell.
Companies:
Microsoft, Cruise Automation, Apple
Related Topics:
Array, Backtracking, Bit Manipulation, Matrix
Similar Questions:
// OJ: https://leetcode.com/problems/unique-paths-iii/
// Author: github.com/lzl124631x
// Time: O(3^(MN))
// Space: O(MN) due to call stack
class Solution {
public:
int uniquePathsIII(vector<vector<int>>& A) {
int M = A.size(), N = A[0].size(), sx, sy, goal = 0, ans = 0, dirs[4][2] = {{0,1},{0,-1},{1,0},{-1,0}};
function<void(int, int)> dfs = [&](int x, int y) {
if (A[x][y] == 2) {
ans += goal == 1;
return;
}
A[x][y] = -1;
--goal;
for (auto &[dx, dy] : dirs) {
int a = x + dx, b = y + dy;
if (a < 0 || a >= M || b < 0 || b >= N || A[a][b] == -1) continue;
dfs(a, b);
}
++goal;
A[x][y] = 0;
};
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
if (A[i][j] != -1) ++goal;
if (A[i][j] == 1) sx = i, sy = j;
}
}
dfs(sx, sy);
return ans;
}
};
Or we are not allowed to change the grid, we can use a bitmask to track visited cells.
// OJ: https://leetcode.com/problems/unique-paths-iii/
// Author: github.com/lzl124631x
// Time: O(3^(MN))
// Space: O(MN)
class Solution {
public:
int uniquePathsIII(vector<vector<int>>& A) {
int M = A.size(), N = A[0].size(), sx, sy, goal = 0, ans = 0, dirs[4][2] = {{0,1},{0,-1},{1,0},{-1,0}}, seen = 0;
function<void(int, int)> dfs = [&](int x, int y) {
if (A[x][y] == 2) {
ans += goal == 1;
return;
}
int bit = 1 << (x * N + y);
seen ^= bit;
--goal;
for (auto &[dx, dy] : dirs) {
int a = x + dx, b = y + dy;
if (a < 0 || a >= M || b < 0 || b >= N || A[a][b] == -1 || seen & (1 << (a * N + b))) continue;
dfs(a, b);
}
++goal;
seen ^= bit;
};
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
if (A[i][j] != -1) ++goal;
if (A[i][j] == 1) sx = i, sy = j;
}
}
dfs(sx, sy);
return ans;
}
};