Skip to content

Latest commit

 

History

History
106 lines (87 loc) · 3.51 KB

README.md

File metadata and controls

106 lines (87 loc) · 3.51 KB

Paddle3D复现FUTR3D

本项目基于Paddle3D套件,复现论文FUTR3D。在Aistudio上有对Mini数据集的代码使用:AiStudio项目连接

数据集中用到的pkl文件以及预训练、初始化权重在百度网盘:

链接:https://pan.baidu.com/s/1CwmILXbDj0vrJSPkK3z_UA 提取码:i3sw

数据集准备

├── data
│   ├── nuscenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval
│   │   ├── nuscenes_infos_train.pkl
│   │   ├── nuscenes_infos_val.pkl

将数据准备成如此格式,并将data文件夹放置根目录处,其中nuscenes_infos_train.pkl和nuscenes_infos_val.pkl文件,均为使用mmdet3d处理nuscenes的方法处理得到。参考如下:mmdet3d处理连接

依赖安装

cd Paddle3D-FUTR3D
pip install -r requirements.txt --user
python setup.py install --user

前向推理

cd Paddle3D-FUTR3D
python tools/evaluate.py --config configs/futr3d/futr3d_cam_lidar.yml --model cam_lidar_pretrained.pdparams

在Nuscenes-Mini上的推理结果如下(PS:NDS指标在MINI数据集上的结果有偏高,但在全量数据集上没有测试问题)

mAP: 0.5709                                                                     
mATE: 0.4564
mASE: 0.4526
mAOE: 0.4662
mAVE: 0.5146
mAAE: 0.2900
NDS: 0.5675
Eval time: 5.5s

Per-class results:
Object Class	AP	ATE	ASE	AOE	AVE	AAE
car	0.894	0.182	0.156	0.082	0.113	0.062
truck	0.794	0.205	0.171	0.034	0.066	0.000
bus	0.992	0.241	0.156	0.036	1.083	0.099
trailer	0.000	1.000	1.000	1.000	1.000	1.000
construction_vehicle	0.000	1.000	1.000	1.000	1.000	1.000
pedestrian	0.856	0.239	0.247	0.331	0.197	0.158
motorcycle	0.696	0.321	0.317	0.556	0.052	0.000
bicycle	0.612	0.199	0.191	0.156	0.605	0.000
traffic_cone	0.866	0.178	0.288	nan	nan	nan
barrier	0.000	1.000	1.000	1.000	nan	nan

在Nuscenes全量数据集上的推理结果如下:

mAP: 0.6383                                                                                                                                                                                
mATE: 0.3494
mASE: 0.2586
mAOE: 0.2799
mAVE: 0.2985
mAAE: 0.1844
NDS: 0.6821
Eval time: 211.4s

Per-class results:
Object Class    AP      ATE     ASE     AOE     AVE     AAE
car     0.866   0.183   0.146   0.052   0.305   0.199
truck   0.605   0.365   0.191   0.074   0.279   0.220
bus     0.712   0.362   0.180   0.044   0.580   0.216
trailer 0.408   0.614   0.205   0.450   0.232   0.174
construction_vehicle    0.255   0.819   0.459   1.006   0.133   0.304
pedestrian      0.827   0.202   0.291   0.340   0.229   0.106
motorcycle      0.717   0.237   0.254   0.231   0.404   0.247
bicycle 0.641   0.189   0.260   0.264   0.226   0.009
traffic_cone    0.697   0.212   0.313   nan     nan     nan
barrier 0.657   0.312   0.287   0.057   nan     nan

单卡训练

其中config文件中的训练配置8卡配置,如使用单卡训练,需要相应调整学习率和warmup参数

cd Paddle3D-FUTR3D
python tools/train.py --config configs/futr3d/futr3d_cam_lidar.yml --model cam_lidar_init.pdparams --save_interval 1

多卡训练

cd Paddle3D-FUTR3D
python -m paddle.distributed.launch tools/train.py --config configs/futr3d/futr3d_cam_lidar.yml --model cam_lidar_init.pdparams --save_interval 1

全量数据集复现结果: