From db589d0fb36b8954ad5320685147d6cfd12e2f6c Mon Sep 17 00:00:00 2001 From: Kamil Skwarczynski Date: Mon, 9 Sep 2024 11:00:58 +0000 Subject: [PATCH] incosnisten \cite --- mcmc/MCMCProcessor.h | 18 +++++++++--------- mcmc/MinuitFit.h | 2 +- mcmc/StatisticalUtils.h | 6 +++--- 3 files changed, 13 insertions(+), 13 deletions(-) diff --git a/mcmc/MCMCProcessor.h b/mcmc/MCMCProcessor.h index 3eeb5a408..b3eeafb8f 100644 --- a/mcmc/MCMCProcessor.h +++ b/mcmc/MCMCProcessor.h @@ -79,7 +79,7 @@ class MCMCProcessor { /// @param Mute Allow silencing many messages, especially important if we calculate matrix many times void MakeCovariance_MP(const bool Mute = false); /// @brief Make and Draw SubOptimality - /// @cite roberts2009adaptive + /// \cite roberts2009adaptive void MakeSubOptimality(const int NIntervals = 10); /// @brief Reset 2D posteriors, in case we would like to calculate in again with different BurnInCut @@ -287,23 +287,23 @@ class MCMCProcessor { /// This function computes the Effective Sample Size (ESS) using the autocorrelations /// calculated by AutoCorrelation(). Ensure that the parameter nLags here matches /// the number of lags used in AutoCorrelation() to obtain accurate results. - /// @cite StanManual - /// @cite hanson2008mcmc - /// @cite gabry2024visual + /// \cite StanManual + /// \cite hanson2008mcmc + /// \cite gabry2024visual inline void CalculateESS(const int nLags, double **LagL); /// @brief Get the batched means variance estimation and variable indicating if number of batches is sensible - /// @cite chakraborty2019estimating - /// @cite rossetti2024batch + /// \cite chakraborty2019estimating + /// \cite rossetti2024batch inline void BatchedAnalysis(); /// @brief CW: Batched means, literally read from an array and chuck into TH1D inline void BatchedMeans(); /// @brief Geweke Diagnostic based on the methods described by Fang (2014) and Karlsbakk (2011). - /// @cite Fang2014GewekeDiagnostics - /// @cite karlsbakk2011 + /// \cite Fang2014GewekeDiagnostics + /// \cite karlsbakk2011 inline void GewekeDiagnostic(); /// @brief Acceptance Probability inline void AcceptanceProbabilities(); - /// @brief RC: Perform spectral analysis of MCMC based on @cite Dunkley:2004sv + /// @brief RC: Perform spectral analysis of MCMC based on \cite Dunkley:2004sv inline void PowerSpectrumAnalysis(); /// Name of MCMC file diff --git a/mcmc/MinuitFit.h b/mcmc/MinuitFit.h index 1ccbb2e8b..710769e8c 100644 --- a/mcmc/MinuitFit.h +++ b/mcmc/MinuitFit.h @@ -9,7 +9,7 @@ #include "Math/Functor.h" /// @brief Implementation of Minuit fitting algorithm -/// @cite James:2004xla +/// \cite James:2004xla class MinuitFit : public LikelihoodFit { public: /// @brief Constructor diff --git a/mcmc/StatisticalUtils.h b/mcmc/StatisticalUtils.h index 06af3164a..d1a3b6875 100644 --- a/mcmc/StatisticalUtils.h +++ b/mcmc/StatisticalUtils.h @@ -13,7 +13,7 @@ #include "manager/manager.h" // ************************** -/// @brief KS: Following H. Jeffreys @cite jeffreys1998theory +/// @brief KS: Following H. Jeffreys \cite jeffreys1998theory /// @param BayesFactor Obtained value of Bayes factor inline std::string GetJeffreysScale(const double BayesFactor){ // ************************** @@ -99,7 +99,7 @@ inline double GetBIC(const double llh, const int data, const int nPars){ // **************** /// @brief KS: See 14.3.10 in Numerical Recipes in C -/// @cite press1992numerical +/// \cite press1992numerical inline double GetNeffective(const int N1, const int N2) { // **************** @@ -224,7 +224,7 @@ inline double GetBetaParameter(const double data, const double mc, const double // ********************* -/// @brief Based on @cite roberts2009adaptive +/// @brief Based on \cite roberts2009adaptive /// @param EigenValues Eigen values of covariance matrix inline double GetSubOptimality(const std::vector& EigenValues, const int TotalTarameters) { // *********************