forked from tyler-smith/go-bip32
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.go
199 lines (160 loc) · 3.94 KB
/
utils.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
package bip32
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"fmt"
"io"
"math/big"
"github.com/FactomProject/basen"
"github.com/FactomProject/btcutilecc"
"golang.org/x/crypto/ripemd160"
)
var (
curve = btcutil.Secp256k1()
curveParams = curve.Params()
// BitcoinBase58Encoding is the encoding used for bitcoin addresses
BitcoinBase58Encoding = basen.NewEncoding("123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz")
)
//
// Hashes
//
func hashSha256(data []byte) ([]byte, error) {
hasher := sha256.New()
_, err := hasher.Write(data)
if err != nil {
return nil, err
}
return hasher.Sum(nil), nil
}
func hashDoubleSha256(data []byte) ([]byte, error) {
hash1, err := hashSha256(data)
if err != nil {
return nil, err
}
hash2, err := hashSha256(hash1)
if err != nil {
return nil, err
}
return hash2, nil
}
func hashRipeMD160(data []byte) ([]byte, error) {
hasher := ripemd160.New()
_, err := io.WriteString(hasher, string(data))
if err != nil {
return nil, err
}
return hasher.Sum(nil), nil
}
func hash160(data []byte) ([]byte, error) {
hash1, err := hashSha256(data)
if err != nil {
return nil, err
}
hash2, err := hashRipeMD160(hash1)
if err != nil {
return nil, err
}
return hash2, nil
}
//
// Encoding
//
func checksum(data []byte) ([]byte, error) {
hash, err := hashDoubleSha256(data)
if err != nil {
return nil, err
}
return hash[:4], nil
}
func addChecksumToBytes(data []byte) ([]byte, error) {
checksum, err := checksum(data)
if err != nil {
return nil, err
}
return append(data, checksum...), nil
}
func base58Encode(data []byte) string {
return BitcoinBase58Encoding.EncodeToString(data)
}
func base58Decode(data string) ([]byte, error) {
return BitcoinBase58Encoding.DecodeString(data)
}
// Keys
func publicKeyForPrivateKey(key []byte) []byte {
return compressPublicKey(curve.ScalarBaseMult(key))
}
func addPublicKeys(key1 []byte, key2 []byte) []byte {
x1, y1 := expandPublicKey(key1)
x2, y2 := expandPublicKey(key2)
return compressPublicKey(curve.Add(x1, y1, x2, y2))
}
func addPrivateKeys(key1 []byte, key2 []byte) []byte {
var key1Int big.Int
var key2Int big.Int
key1Int.SetBytes(key1)
key2Int.SetBytes(key2)
key1Int.Add(&key1Int, &key2Int)
key1Int.Mod(&key1Int, curve.Params().N)
b := key1Int.Bytes()
if len(b) < 32 {
extra := make([]byte, 32-len(b))
b = append(extra, b...)
}
return b
}
func compressPublicKey(x *big.Int, y *big.Int) []byte {
var key bytes.Buffer
// Write header; 0x2 for even y value; 0x3 for odd
key.WriteByte(byte(0x2) + byte(y.Bit(0)))
// Write X coord; Pad the key so x is aligned with the LSB. Pad size is key length - header size (1) - xBytes size
xBytes := x.Bytes()
for i := 0; i < (PublicKeyCompressedLength - 1 - len(xBytes)); i++ {
key.WriteByte(0x0)
}
key.Write(xBytes)
return key.Bytes()
}
// As described at https://crypto.stackexchange.com/a/8916
func expandPublicKey(key []byte) (*big.Int, *big.Int) {
Y := big.NewInt(0)
X := big.NewInt(0)
X.SetBytes(key[1:])
// y^2 = x^3 + ax^2 + b
// a = 0
// => y^2 = x^3 + b
ySquared := big.NewInt(0)
ySquared.Exp(X, big.NewInt(3), nil)
ySquared.Add(ySquared, curveParams.B)
Y.ModSqrt(ySquared, curveParams.P)
Ymod2 := big.NewInt(0)
Ymod2.Mod(Y, big.NewInt(2))
signY := uint64(key[0]) - 2
if signY != Ymod2.Uint64() {
Y.Sub(curveParams.P, Y)
}
return X, Y
}
func validatePrivateKey(key []byte) error {
if fmt.Sprintf("%x", key) == "0000000000000000000000000000000000000000000000000000000000000000" || //if the key is zero
bytes.Compare(key, curveParams.N.Bytes()) >= 0 || //or is outside of the curve
len(key) != 32 { //or is too short
return ErrInvalidPrivateKey
}
return nil
}
func validateChildPublicKey(key []byte) error {
x, y := expandPublicKey(key)
if x.Sign() == 0 || y.Sign() == 0 {
return ErrInvalidPublicKey
}
return nil
}
//
// Numerical
//
func uint32Bytes(i uint32) []byte {
bytes := make([]byte, 4)
binary.BigEndian.PutUint32(bytes, i)
return bytes
}