-
Notifications
You must be signed in to change notification settings - Fork 210
/
earcut.js
682 lines (548 loc) · 20.8 KB
/
earcut.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
export default function earcut(data, holeIndices, dim = 2) {
const hasHoles = holeIndices && holeIndices.length;
const outerLen = hasHoles ? holeIndices[0] * dim : data.length;
let outerNode = linkedList(data, 0, outerLen, dim, true);
const triangles = [];
if (!outerNode || outerNode.next === outerNode.prev) return triangles;
let minX, minY, invSize;
if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim);
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
if (data.length > 80 * dim) {
minX = Infinity;
minY = Infinity;
let maxX = -Infinity;
let maxY = -Infinity;
for (let i = dim; i < outerLen; i += dim) {
const x = data[i];
const y = data[i + 1];
if (x < minX) minX = x;
if (y < minY) minY = y;
if (x > maxX) maxX = x;
if (y > maxY) maxY = y;
}
// minX, minY and invSize are later used to transform coords into integers for z-order calculation
invSize = Math.max(maxX - minX, maxY - minY);
invSize = invSize !== 0 ? 32767 / invSize : 0;
}
earcutLinked(outerNode, triangles, dim, minX, minY, invSize, 0);
return triangles;
}
// create a circular doubly linked list from polygon points in the specified winding order
function linkedList(data, start, end, dim, clockwise) {
let last;
if (clockwise === (signedArea(data, start, end, dim) > 0)) {
for (let i = start; i < end; i += dim) last = insertNode(i / dim | 0, data[i], data[i + 1], last);
} else {
for (let i = end - dim; i >= start; i -= dim) last = insertNode(i / dim | 0, data[i], data[i + 1], last);
}
if (last && equals(last, last.next)) {
removeNode(last);
last = last.next;
}
return last;
}
// eliminate colinear or duplicate points
function filterPoints(start, end) {
if (!start) return start;
if (!end) end = start;
let p = start,
again;
do {
again = false;
if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
removeNode(p);
p = end = p.prev;
if (p === p.next) break;
again = true;
} else {
p = p.next;
}
} while (again || p !== end);
return end;
}
// main ear slicing loop which triangulates a polygon (given as a linked list)
function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
if (!ear) return;
// interlink polygon nodes in z-order
if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
let stop = ear;
// iterate through ears, slicing them one by one
while (ear.prev !== ear.next) {
const prev = ear.prev;
const next = ear.next;
if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
triangles.push(prev.i, ear.i, next.i); // cut off the triangle
removeNode(ear);
// skipping the next vertex leads to less sliver triangles
ear = next.next;
stop = next.next;
continue;
}
ear = next;
// if we looped through the whole remaining polygon and can't find any more ears
if (ear === stop) {
// try filtering points and slicing again
if (!pass) {
earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1);
// if this didn't work, try curing all small self-intersections locally
} else if (pass === 1) {
ear = cureLocalIntersections(filterPoints(ear), triangles);
earcutLinked(ear, triangles, dim, minX, minY, invSize, 2);
// as a last resort, try splitting the remaining polygon into two
} else if (pass === 2) {
splitEarcut(ear, triangles, dim, minX, minY, invSize);
}
break;
}
}
}
// check whether a polygon node forms a valid ear with adjacent nodes
function isEar(ear) {
const a = ear.prev,
b = ear,
c = ear.next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear
const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y;
// triangle bbox
const x0 = Math.min(ax, bx, cx),
y0 = Math.min(ay, by, cy),
x1 = Math.max(ax, bx, cx),
y1 = Math.max(ay, by, cy);
let p = c.next;
while (p !== a) {
if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 &&
pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, p.x, p.y) &&
area(p.prev, p, p.next) >= 0) return false;
p = p.next;
}
return true;
}
function isEarHashed(ear, minX, minY, invSize) {
const a = ear.prev,
b = ear,
c = ear.next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y;
// triangle bbox
const x0 = Math.min(ax, bx, cx),
y0 = Math.min(ay, by, cy),
x1 = Math.max(ax, bx, cx),
y1 = Math.max(ay, by, cy);
// z-order range for the current triangle bbox;
const minZ = zOrder(x0, y0, minX, minY, invSize),
maxZ = zOrder(x1, y1, minX, minY, invSize);
let p = ear.prevZ,
n = ear.nextZ;
// look for points inside the triangle in both directions
while (p && p.z >= minZ && n && n.z <= maxZ) {
if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c &&
pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
p = p.prevZ;
if (n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c &&
pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
n = n.nextZ;
}
// look for remaining points in decreasing z-order
while (p && p.z >= minZ) {
if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c &&
pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
p = p.prevZ;
}
// look for remaining points in increasing z-order
while (n && n.z <= maxZ) {
if (n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c &&
pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
n = n.nextZ;
}
return true;
}
// go through all polygon nodes and cure small local self-intersections
function cureLocalIntersections(start, triangles) {
let p = start;
do {
const a = p.prev,
b = p.next.next;
if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
triangles.push(a.i, p.i, b.i);
// remove two nodes involved
removeNode(p);
removeNode(p.next);
p = start = b;
}
p = p.next;
} while (p !== start);
return filterPoints(p);
}
// try splitting polygon into two and triangulate them independently
function splitEarcut(start, triangles, dim, minX, minY, invSize) {
// look for a valid diagonal that divides the polygon into two
let a = start;
do {
let b = a.next.next;
while (b !== a.prev) {
if (a.i !== b.i && isValidDiagonal(a, b)) {
// split the polygon in two by the diagonal
let c = splitPolygon(a, b);
// filter colinear points around the cuts
a = filterPoints(a, a.next);
c = filterPoints(c, c.next);
// run earcut on each half
earcutLinked(a, triangles, dim, minX, minY, invSize, 0);
earcutLinked(c, triangles, dim, minX, minY, invSize, 0);
return;
}
b = b.next;
}
a = a.next;
} while (a !== start);
}
// link every hole into the outer loop, producing a single-ring polygon without holes
function eliminateHoles(data, holeIndices, outerNode, dim) {
const queue = [];
for (let i = 0, len = holeIndices.length; i < len; i++) {
const start = holeIndices[i] * dim;
const end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
const list = linkedList(data, start, end, dim, false);
if (list === list.next) list.steiner = true;
queue.push(getLeftmost(list));
}
queue.sort(compareXYSlope);
// process holes from left to right
for (let i = 0; i < queue.length; i++) {
outerNode = eliminateHole(queue[i], outerNode);
}
return outerNode;
}
function compareXYSlope(a, b) {
let result = a.x - b.x;
// when the left-most point of 2 holes meet at a vertex, sort the holes counterclockwise so that when we find
// the bridge to the outer shell is always the point that they meet at.
if (result === 0) {
result = a.y - b.y;
if (result === 0) {
const aSlope = (a.next.y - a.y) / (a.next.x - a.x);
const bSlope = (b.next.y - b.y) / (b.next.x - b.x);
result = aSlope - bSlope;
}
}
return result;
}
// find a bridge between vertices that connects hole with an outer ring and and link it
function eliminateHole(hole, outerNode) {
const bridge = findHoleBridge(hole, outerNode);
if (!bridge) {
return outerNode;
}
const bridgeReverse = splitPolygon(bridge, hole);
// filter collinear points around the cuts
filterPoints(bridgeReverse, bridgeReverse.next);
return filterPoints(bridge, bridge.next);
}
// David Eberly's algorithm for finding a bridge between hole and outer polygon
function findHoleBridge(hole, outerNode) {
let p = outerNode;
const hx = hole.x;
const hy = hole.y;
let qx = -Infinity;
let m;
// find a segment intersected by a ray from the hole's leftmost point to the left;
// segment's endpoint with lesser x will be potential connection point
// unless they intersect at a vertex, then choose the vertex
if (equals(hole, p)) return p;
do {
if (equals(hole, p.next)) return p.next;
else if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
if (x <= hx && x > qx) {
qx = x;
m = p.x < p.next.x ? p : p.next;
if (x === hx) return m; // hole touches outer segment; pick leftmost endpoint
}
}
p = p.next;
} while (p !== outerNode);
if (!m) return null;
// look for points inside the triangle of hole point, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the point of the minimum angle with the ray as connection point
const stop = m;
const mx = m.x;
const my = m.y;
let tanMin = Infinity;
p = m;
do {
if (hx >= p.x && p.x >= mx && hx !== p.x &&
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
const tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
if (locallyInside(p, hole) &&
(tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p)))))) {
m = p;
tanMin = tan;
}
}
p = p.next;
} while (p !== stop);
return m;
}
// whether sector in vertex m contains sector in vertex p in the same coordinates
function sectorContainsSector(m, p) {
return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
}
// interlink polygon nodes in z-order
function indexCurve(start, minX, minY, invSize) {
let p = start;
do {
if (p.z === 0) p.z = zOrder(p.x, p.y, minX, minY, invSize);
p.prevZ = p.prev;
p.nextZ = p.next;
p = p.next;
} while (p !== start);
p.prevZ.nextZ = null;
p.prevZ = null;
sortLinked(p);
}
// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
function sortLinked(list) {
let numMerges;
let inSize = 1;
do {
let p = list;
let e;
list = null;
let tail = null;
numMerges = 0;
while (p) {
numMerges++;
let q = p;
let pSize = 0;
for (let i = 0; i < inSize; i++) {
pSize++;
q = q.nextZ;
if (!q) break;
}
let qSize = inSize;
while (pSize > 0 || (qSize > 0 && q)) {
if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
e = p;
p = p.nextZ;
pSize--;
} else {
e = q;
q = q.nextZ;
qSize--;
}
if (tail) tail.nextZ = e;
else list = e;
e.prevZ = tail;
tail = e;
}
p = q;
}
tail.nextZ = null;
inSize *= 2;
} while (numMerges > 1);
return list;
}
// z-order of a point given coords and inverse of the longer side of data bbox
function zOrder(x, y, minX, minY, invSize) {
// coords are transformed into non-negative 15-bit integer range
x = (x - minX) * invSize | 0;
y = (y - minY) * invSize | 0;
x = (x | (x << 8)) & 0x00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F;
x = (x | (x << 2)) & 0x33333333;
x = (x | (x << 1)) & 0x55555555;
y = (y | (y << 8)) & 0x00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F;
y = (y | (y << 2)) & 0x33333333;
y = (y | (y << 1)) & 0x55555555;
return x | (y << 1);
}
// find the leftmost node of a polygon ring
function getLeftmost(start) {
let p = start,
leftmost = start;
do {
if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p;
p = p.next;
} while (p !== start);
return leftmost;
}
// check if a point lies within a convex triangle
function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
return (cx - px) * (ay - py) >= (ax - px) * (cy - py) &&
(ax - px) * (by - py) >= (bx - px) * (ay - py) &&
(bx - px) * (cy - py) >= (cx - px) * (by - py);
}
// check if a point lies within a convex triangle but false if its equal to the first point of the triangle
function pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, px, py) {
return !(ax === px && ay === py) && pointInTriangle(ax, ay, bx, by, cx, cy, px, py);
}
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
function isValidDiagonal(a, b) {
return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && // dones't intersect other edges
(locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible
(area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
}
// signed area of a triangle
function area(p, q, r) {
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
}
// check if two points are equal
function equals(p1, p2) {
return p1.x === p2.x && p1.y === p2.y;
}
// check if two segments intersect
function intersects(p1, q1, p2, q2) {
const o1 = sign(area(p1, q1, p2));
const o2 = sign(area(p1, q1, q2));
const o3 = sign(area(p2, q2, p1));
const o4 = sign(area(p2, q2, q1));
if (o1 !== o2 && o3 !== o4) return true; // general case
if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
return false;
}
// for collinear points p, q, r, check if point q lies on segment pr
function onSegment(p, q, r) {
return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
}
function sign(num) {
return num > 0 ? 1 : num < 0 ? -1 : 0;
}
// check if a polygon diagonal intersects any polygon segments
function intersectsPolygon(a, b) {
let p = a;
do {
if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
intersects(p, p.next, a, b)) return true;
p = p.next;
} while (p !== a);
return false;
}
// check if a polygon diagonal is locally inside the polygon
function locallyInside(a, b) {
return area(a.prev, a, a.next) < 0 ?
area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 :
area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
}
// check if the middle point of a polygon diagonal is inside the polygon
function middleInside(a, b) {
let p = a;
let inside = false;
const px = (a.x + b.x) / 2;
const py = (a.y + b.y) / 2;
do {
if (((p.y > py) !== (p.next.y > py)) && p.next.y !== p.y &&
(px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x))
inside = !inside;
p = p.next;
} while (p !== a);
return inside;
}
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
// if one belongs to the outer ring and another to a hole, it merges it into a single ring
function splitPolygon(a, b) {
const a2 = createNode(a.i, a.x, a.y),
b2 = createNode(b.i, b.x, b.y),
an = a.next,
bp = b.prev;
a.next = b;
b.prev = a;
a2.next = an;
an.prev = a2;
b2.next = a2;
a2.prev = b2;
bp.next = b2;
b2.prev = bp;
return b2;
}
// create a node and optionally link it with previous one (in a circular doubly linked list)
function insertNode(i, x, y, last) {
const p = createNode(i, x, y);
if (!last) {
p.prev = p;
p.next = p;
} else {
p.next = last.next;
p.prev = last;
last.next.prev = p;
last.next = p;
}
return p;
}
function removeNode(p) {
p.next.prev = p.prev;
p.prev.next = p.next;
if (p.prevZ) p.prevZ.nextZ = p.nextZ;
if (p.nextZ) p.nextZ.prevZ = p.prevZ;
}
function createNode(i, x, y) {
return {
i, // vertex index in coordinates array
x, y, // vertex coordinates
prev: null, // previous and next vertex nodes in a polygon ring
next: null,
z: 0, // z-order curve value
prevZ: null, // previous and next nodes in z-order
nextZ: null,
steiner: false // indicates whether this is a steiner point
};
}
// return a percentage difference between the polygon area and its triangulation area;
// used to verify correctness of triangulation
export function deviation(data, holeIndices, dim, triangles) {
const hasHoles = holeIndices && holeIndices.length;
const outerLen = hasHoles ? holeIndices[0] * dim : data.length;
let polygonArea = Math.abs(signedArea(data, 0, outerLen, dim));
if (hasHoles) {
for (let i = 0, len = holeIndices.length; i < len; i++) {
const start = holeIndices[i] * dim;
const end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
polygonArea -= Math.abs(signedArea(data, start, end, dim));
}
}
let trianglesArea = 0;
for (let i = 0; i < triangles.length; i += 3) {
const a = triangles[i] * dim;
const b = triangles[i + 1] * dim;
const c = triangles[i + 2] * dim;
trianglesArea += Math.abs(
(data[a] - data[c]) * (data[b + 1] - data[a + 1]) -
(data[a] - data[b]) * (data[c + 1] - data[a + 1]));
}
return polygonArea === 0 && trianglesArea === 0 ? 0 :
Math.abs((trianglesArea - polygonArea) / polygonArea);
}
function signedArea(data, start, end, dim) {
let sum = 0;
for (let i = start, j = end - dim; i < end; i += dim) {
sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
j = i;
}
return sum;
}
// turn a polygon in a multi-dimensional array form (e.g. as in GeoJSON) into a form Earcut accepts
export function flatten(data) {
const vertices = [];
const holes = [];
const dimensions = data[0][0].length;
let holeIndex = 0;
let prevLen = 0;
for (const ring of data) {
for (const p of ring) {
for (let d = 0; d < dimensions; d++) vertices.push(p[d]);
}
if (prevLen) {
holeIndex += prevLen;
holes.push(holeIndex);
}
prevLen = ring.length;
}
return {vertices, holes, dimensions};
}