-
Notifications
You must be signed in to change notification settings - Fork 0
/
optimizers.py
375 lines (299 loc) · 11.5 KB
/
optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
from copy import deepcopy
import numpy as np
class Optimizer():
""" Optimizer parent class.
Attributes
----------
lr_schedule : LRSchedule
The learning rate schedule of the optimizer.
lr : float
The latest learning rate.
Methods
-------
__init__()
Constructor.
apply_lr_schedule()
Applies the learning rate schedule of the optimizer.
get_lr()
Returns the latest learning rate of the optimizer's learning rate schedule.
"""
def __init__(self, lr_schedule, grad_clipper, repr_str):
""" Constructor.
Parameters
----------
lr_schedule : LRSchedule
The learning rate schedule of the optimizer.
Notes
-----
None
"""
self.lr_schedule = lr_schedule
self.grad_clipper = grad_clipper
self.lr = self.lr_schedule.get_lr()
self.repr_str = repr_str
def apply_lr_schedule(self, ):
""" Applies the learning rate schedule of the optimizer.
Parameters
----------
None
Returns
-------
None
Notes
-----
Updates self.lr
"""
self.lr_schedule.apply_schedule()
self.lr = self.lr_schedule.get_lr()
def get_lr(self, ):
""" Returns the latest learning rate of the optimizer's learning rate schedule.
Parameters
----------
None
Returns
-------
lr : float
The latest learning rate of the learning rate schedule of the optimizer.
Notes
-----
Updates self.lr
"""
return deepcopy(self.lr)
def __repr__(self):
return self.repr_str
class SGDOptimizer(Optimizer):
""" Stochastic gradient descent optimizer.
Attributes
----------
lr_schedule : LRSchedule
The learning rate schedule of the optimizer.
lr : float
The latest learning rate.
Methods
-------
__init__()
Constructor.
apply_lr_schedule()
Applies the learning rate schedule of the optimizer.
get_lr()
Returns the latest learning rate of the optimizer's learning rate schedule.
apply_grads(trainable_params, grads)
Applies the gradient update rule to trainable params using gradients.
"""
def __init__(self, lr_schedule, grad_clipper):
""" Constructor.
Inherits everything from the Optimizer class.
Parameters
----------
lr_schedule : LRSchedule
The learning rate schedule of the optimizer.
Notes
-----
None
"""
repr_str = f"sgd with {lr_schedule.__repr__()} and {grad_clipper.__repr__()}"
super().__init__(lr_schedule, grad_clipper, repr_str)
def apply_grads(self, trainable_params, grads):
""" Applies the gradient update rule to trainable params using gradients.
Parameters
----------
trainable_params : list
The list of dictionaries of the trainable parameters of all layers of a model.
At idx is the dictionary of trainable parameters of layer idx in the Model.layers list.
grads : list
The list of dictionaries of gradients of all parameters of all layers of a model.
At idx is the dictionary of gradients of layer idx in the Model.layers list.
Returns
-------
updated_trainable_params : list
The list of dictionaries of the updated trainable parameters of all layers of a model.
At idx is the dictionary of the updated trainable parameters of layer idx
in the Model.layers list.
Notes
-----
Iterates over layers in ascending order in the Model.layers list.
Raises
------
AssertionError
If the lengths of trainable_weights and grads lists are not the same.
"""
if self.grad_clipper is not None:
grads = deepcopy(self.grad_clipper(grads))
updated_trainable_params = deepcopy(trainable_params)
assert len(trainable_params) == len(grads)
for idx in range(len(trainable_params)):
param_dict = deepcopy(trainable_params[idx])
grad_dict = deepcopy(grads[idx])
for p, g in zip(param_dict, grad_dict):
updated_trainable_params[idx][p] = param_dict[p] - self.lr * grad_dict[g]
return deepcopy(updated_trainable_params)
class AdaGradOptimizer(Optimizer):
""" AdaGrad gradient descent optimizer.
Attributes
----------
lr_schedule : LRSchedule
The learning rate schedule of the optimizer.
lr : float
The latest learning rate.
first_call : bool
If first call.
epsilon : float
Numerical stability constant.
cache : list
A list of dicts for cache of feature of param grads such
as running mean of squared grads, m.
Methods
-------
__init__()
Constructor.
apply_lr_schedule()
Applies the learning rate schedule of the optimizer.
get_lr()
Returns the latest learning rate of the optimizer's learning rate schedule.
apply_grads(trainable_params, grads)
Applies the gradient update rule to trainable params using gradients.
build_cache(trainable_params, grads):
Build cache on first call.
update_cache(trainable_params, grads):
Update cache on call.
get_opt_grad(trainable_params, grads):
Get the optimizer specific grads computed using the cache.
"""
def __init__(self, lr_schedule, grad_clipper, epsilon=1e-6):
""" Constructor.
Inherits everything from the Optimizer class.
Parameters
----------
lr_schedule : LRSchedule
The learning rate schedule of the optimizer.
epsilon : float
Numerical stability constant.
Notes
-----
None
"""
repr_str = f"adagrad with {lr_schedule.__repr__()} and {grad_clipper.__repr__()}"
super().__init__(lr_schedule, grad_clipper, repr_str)
self.first_call = True
self.epsilon = epsilon
self.cache = []
def build_cache(self, trainable_params, grads):
""" Build cache on first call.
Parameters
----------
trainable_params : list
The list of dictionaries of the trainable parameters of all layers of a model.
At idx is the dictionary of trainable parameters of layer idx in the Model.layers list.
grads : list
The list of dictionaries of gradients of all parameters of all layers of a model.
At idx is the dictionary of gradients of layer idx in the Model.layers list.
Returns
-------
None
Notes
-----
self.cache is built after calling.
"""
for idx in range(len(trainable_params)):
param_dict = deepcopy(trainable_params[idx])
grad_dict = deepcopy(grads[idx])
m_dict = {}
for p, g in zip(param_dict, grad_dict):
m_dict[p] = np.zeros(param_dict[p].shape)
self.cache.append(m_dict)
def update_cache(self, trainable_params, grads):
""" Update cache on call.
Parameters
----------
trainable_params : list
The list of dictionaries of the trainable parameters of all layers of a model.
At idx is the dictionary of trainable parameters of layer idx in the Model.layers list.
grads : list
The list of dictionaries of gradients of all parameters of all layers of a model.
At idx is the dictionary of gradients of layer idx in the Model.layers list.
Returns
-------
None
Notes
-----
self.cache is updated after calling.
"""
# asset not empty
assert self.cache
for idx in range(len(trainable_params)):
param_dict = deepcopy(trainable_params[idx])
grad_dict = deepcopy(grads[idx])
m_dict = deepcopy(self.cache[idx])
for p, g in zip(param_dict, grad_dict):
m_dict[p] += np.power(grad_dict[g], 2)
self.cache[idx] = deepcopy(m_dict)
def get_opt_grad(self, trainable_params, grads):
""" Get the optimizer specific grads computed using the cache.
Parameters
----------
trainable_params : list
The list of dictionaries of the trainable parameters of all layers of a model.
At idx is the dictionary of trainable parameters of layer idx in the Model.layers list.
grads : list
The list of dictionaries of gradients of all parameters of all layers of a model.
At idx is the dictionary of gradients of layer idx in the Model.layers list.
Returns
-------
opt_grads : list
The list of dictionaries of the optimizer specifc gradients of all parameters of
all layers of a model. At idx is the dictionary of gradients of layer idx in
the Model.layers list.
Notes
-----
None
"""
# asset not empty
assert self.cache
opt_grads = deepcopy(grads)
for idx in range(len(trainable_params)):
param_dict = deepcopy(trainable_params[idx])
grad_dict = deepcopy(grads[idx])
m_dict = deepcopy(self.cache[idx])
for p, g in zip(param_dict, grad_dict):
opt_grads[idx][g] = grad_dict[g] / np.sqrt(m_dict[p] + self.epsilon)
return deepcopy(opt_grads)
def apply_grads(self, trainable_params, grads):
""" Applies the gradient update rule to trainable params using gradients.
Parameters
----------
trainable_params : list
The list of dictionaries of the trainable parameters of all layers of a model.
At idx is the dictionary of trainable parameters of layer idx in the Model.layers list.
grads : list
The list of dictionaries of gradients of all parameters of all layers of a model.
At idx is the dictionary of gradients of layer idx in the Model.layers list.
Returns
-------
updated_trainable_params : list
The list of dictionaries of the updated trainable parameters of all layers of a model.
At idx is the dictionary of the updated trainable parameters of layer idx
in the Model.layers list.
Notes
-----
Iterates over layers in ascending order in the Model.layers list.
Raises
------
AssertionError
If the lengths of trainable_weights and grads lists are not the same.
"""
if self.grad_clipper is not None:
grads = deepcopy(self.grad_clipper(grads))
updated_trainable_params = deepcopy(trainable_params)
assert len(trainable_params) == len(grads)
if self.first_call:
self.first_call = False
self.build_cache(trainable_params, grads)
self.update_cache(trainable_params, grads)
opt_grads = self.get_opt_grad(trainable_params, grads)
for idx in range(len(trainable_params)):
param_dict = deepcopy(trainable_params[idx])
grad_dict = deepcopy(grads[idx])
opt_grad_dict = deepcopy(opt_grads[idx])
for p, g in zip(param_dict, grad_dict):
updated_trainable_params[idx][p] = param_dict[p] - self.lr * opt_grad_dict[g]
return deepcopy(updated_trainable_params)