-
Notifications
You must be signed in to change notification settings - Fork 1
/
README.html
770 lines (749 loc) · 214 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<!-- README.md is generated from README.Rmd. Please edit that file -->
<h1 id="latent2likert-">latent2likert
<a href="https://lalovic.io/latent2likert/"><img role="img" aria-label="Package logo" src="" align="right" height="138" alt="Package logo" /></a></h1>
<!-- badges: start -->
<p><a href="https://github.com/markolalovic/latent2likert/actions/workflows/R-CMD-check.yaml"><img role="img" aria-label="R-CMD-check" src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSIxNTIiIGhlaWdodD0iMjAiPgogIDx0aXRsZT5SLUNNRC1jaGVjayAtIHBhc3Npbmc8L3RpdGxlPgogIDxkZWZzPgogICAgPGxpbmVhckdyYWRpZW50IGlkPSJ3b3JrZmxvdy1maWxsIiB4MT0iNTAlIiB5MT0iMCUiIHgyPSI1MCUiIHkyPSIxMDAlIj4KICAgICAgPHN0b3Agc3RvcC1jb2xvcj0iIzQ0NEQ1NiIgb2Zmc2V0PSIwJSI+PC9zdG9wPgogICAgICA8c3RvcCBzdG9wLWNvbG9yPSIjMjQyOTJFIiBvZmZzZXQ9IjEwMCUiPjwvc3RvcD4KICAgIDwvbGluZWFyR3JhZGllbnQ+CiAgICA8bGluZWFyR3JhZGllbnQgaWQ9InN0YXRlLWZpbGwiIHgxPSI1MCUiIHkxPSIwJSIgeDI9IjUwJSIgeTI9IjEwMCUiPgogICAgICA8c3RvcCBzdG9wLWNvbG9yPSIjMzREMDU4IiBvZmZzZXQ9IjAlIj48L3N0b3A+CiAgICAgIDxzdG9wIHN0b3AtY29sb3I9IiMyOEE3NDUiIG9mZnNldD0iMTAwJSI+PC9zdG9wPgogICAgPC9saW5lYXJHcmFkaWVudD4KICA8L2RlZnM+CiAgPGcgZmlsbD0ibm9uZSIgZmlsbC1ydWxlPSJldmVub2RkIj4KICAgIDxnIGZvbnQtZmFtaWx5PSImIzM5O0RlamFWdSBTYW5zJiMzOTssVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICAgIDxwYXRoIGlkPSJ3b3JrZmxvdy1iZyIgZD0iTTAsMyBDMCwxLjM0MzEgMS4zNTUyLDAgMy4wMjcwMjcwMywwIEwxMDIsMCBMMTAyLDIwIEwzLjAyNzAyNzAzLDIwIEMxLjM1NTIsMjAgMCwxOC42NTY5IDAsMTcgTDAsMyBaIiBmaWxsPSJ1cmwoI3dvcmtmbG93LWZpbGwpIiBmaWxsLXJ1bGU9Im5vbnplcm8iPjwvcGF0aD4KICAgICAgPHRleHQgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgICAgPHRzcGFuIHg9IjIyLjE5ODE5ODIiIHk9IjE1IiBhcmlhLWhpZGRlbj0idHJ1ZSI+Ui1DTUQtY2hlY2s8L3RzcGFuPgogICAgICA8L3RleHQ+CiAgICAgIDx0ZXh0IGZpbGw9IiNGRkZGRkYiPgogICAgICAgIDx0c3BhbiB4PSIyMi4xOTgxOTgyIiB5PSIxNCI+Ui1DTUQtY2hlY2s8L3RzcGFuPgogICAgICA8L3RleHQ+CiAgICA8L2c+CiAgICA8ZyB0cmFuc2Zvcm09InRyYW5zbGF0ZSgxMDIpIiBmb250LWZhbWlseT0iJiMzOTtEZWphVnUgU2FucyYjMzk7LFZlcmRhbmEsR2VuZXZhLHNhbnMtc2VyaWYiIGZvbnQtc2l6ZT0iMTEiPgogICAgICA8cGF0aCBkPSJNMCAwaDQ2LjkzOUM0OC42MjkgMCA1MCAxLjM0MyA1MCAzdjE0YzAgMS42NTctMS4zNyAzLTMuMDYxIDNIMFYweiIgaWQ9InN0YXRlLWJnIiBmaWxsPSJ1cmwoI3N0YXRlLWZpbGwpIiBmaWxsLXJ1bGU9Im5vbnplcm8iPjwvcGF0aD4KICAgICAgPHRleHQgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyIgYXJpYS1oaWRkZW49InRydWUiPgogICAgICAgIDx0c3BhbiB4PSI0IiB5PSIxNSI+cGFzc2luZzwvdHNwYW4+CiAgICAgIDwvdGV4dD4KICAgICAgPHRleHQgZmlsbD0iI0ZGRkZGRiI+CiAgICAgICAgPHRzcGFuIHg9IjQiIHk9IjE0Ij5wYXNzaW5nPC90c3Bhbj4KICAgICAgPC90ZXh0PgogICAgPC9nPgogICAgPHBhdGggZmlsbD0iIzk1OURBNSIgZD0iTTExIDNjLTMuODY4IDAtNyAzLjEzMi03IDdhNi45OTYgNi45OTYgMCAwIDAgNC43ODYgNi42NDFjLjM1LjA2Mi40ODItLjE0OC40ODItLjMzMiAwLS4xNjYtLjAxLS43MTgtLjAxLTEuMzA0LTEuNzU4LjMyNC0yLjIxMy0uNDI5LTIuMzUzLS44MjItLjA3OS0uMjAyLS40Mi0uODIzLS43MTctLjk5LS4yNDUtLjEzLS41OTUtLjQ1NC0uMDEtLjQ2My41NTItLjAwOS45NDYuNTA4IDEuMDc3LjcxOC42MyAxLjA1OCAxLjYzNi43NiAyLjAzOS41NzcuMDYxLS40NTUuMjQ1LS43NjEuNDQ2LS45MzYtMS41NTctLjE3NS0zLjE4NS0uNzc5LTMuMTg1LTMuNDU2IDAtLjc2Mi4yNzEtMS4zOTIuNzE4LTEuODgyLS4wNy0uMTc1LS4zMTUtLjg5Mi4wNy0xLjg1NSAwIDAgLjU4Ni0uMTgzIDEuOTI1LjcxOGE2LjUgNi41IDAgMCAxIDEuNzUtLjIzNiA2LjUgNi41IDAgMCAxIDEuNzUuMjM2YzEuMzM4LS45MSAxLjkyNS0uNzE4IDEuOTI1LS43MTguMzg1Ljk2My4xNCAxLjY4LjA3IDEuODU1LjQ0Ni40OS43MTcgMS4xMTIuNzE3IDEuODgyIDAgMi42ODYtMS42MzYgMy4yOC0zLjE5NCAzLjQ1Ni4yNTQuMjE5LjQ3My42MzkuNDczIDEuMjk1IDAgLjkzNi0uMDA5IDEuNjg5LS4wMDkgMS45MjUgMCAuMTg0LjEzMS40MDIuNDgxLjMzMkE3LjAxMSA3LjAxMSAwIDAgMCAxOCAxMGMwLTMuODY3LTMuMTMzLTctNy03eiI+PC9wYXRoPgogIDwvZz4KPC9zdmc+Cgo=" alt="R-CMD-check" /></a> <a href="https://app.codecov.io/gh/markolalovic/latent2likert"><img role="img" aria-label="codecov" src="" alt="codecov" /></a> <a href="https://CRAN.R-project.org/package=latent2likert"><img role="img" aria-label="CRAN status" src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgYXJpYS1sYWJlbD0iQ1JBTiAxLjIuMSI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgcng9IjMiIGZpbGw9IiNmZmYiLz4KICA8L21hc2s+CiAgPGcgbWFzaz0idXJsKCNhKSI+CiAgICA8cGF0aCBmaWxsPSIjNTU1IiBkPSJNMCAwaDQzdjIwSDB6Ii8+CiAgICA8cGF0aCBmaWxsPSIjNGMxIiBkPSJNNDMgMGg2M3YyMEg0M3oiLz4KICAgIDxwYXRoIGZpbGw9InVybCgjYikiIGQ9Ik0wIDBoODV2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIyMS41IiB5PSIxNSIgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgIENSQU4KICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjIxLjUiIHk9IjE0Ij4KICAgICAgQ1JBTgogICAgPC90ZXh0PgogICAgPHRleHQgeD0iNjMiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMS4yLjEKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjYzIiB5PSIxNCI+CiAgICAgIDEuMi4xCiAgICA8L3RleHQ+CiAgPC9nPgo8L3N2Zz4=" alt="CRAN status" /></a> <a href="https://cranlogs.r-pkg.org/badges/latent2likert"><img role="img" aria-label="downloads" src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSIxNDkiIGhlaWdodD0iMjAiIGFyaWEtbGFiZWw9IkNSQU4gZG93bmxvYWRzIDM0Mi9tb250aCI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSIxNDkiIGhlaWdodD0iMjAiIHJ4PSIzIiBmaWxsPSIjZmZmIi8+CiAgPC9tYXNrPgogIDxnIG1hc2s9InVybCgjYSkiPjxwYXRoIGZpbGw9IiM1NTUiIGQ9Ik0wIDBoNzB2MjBIMHoiLz4KICAgIDxwYXRoIGZpbGw9IiMwMDdlYzYiIGQ9Ik03MCAwaDc5djIwSDcweiIvPgogICAgPHBhdGggZmlsbD0idXJsKCNiKSIgZD0iTTAgMGgxNDl2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIzNiIgeT0iMTUiIGZpbGw9IiMwMTAxMDEiIGZpbGwtb3BhY2l0eT0iLjMiPgogICAgICBkb3dubG9hZHMKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjM2IiB5PSIxNCI+CiAgICAgIGRvd25sb2FkcwogICAgPC90ZXh0PgogICAgPHRleHQgeD0iMTA4LjUiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMzQyL21vbnRoCiAgICA8L3RleHQ+CiAgICA8dGV4dCB4PSIxMDguNSIgeT0iMTQiPgogICAgICAzNDIvbW9udGgKICAgIDwvdGV4dD4KICA8L2c+Cjwvc3ZnPg==" alt="downloads" /></a></p>
<!-- badges: end -->
<h2 id="overview">Overview</h2>
<p>The <strong>latent2likert</strong> package is designed to effectively
simulate the discretization process inherent to Likert scales while
minimizing distortion. It converts continuous latent variables into
ordinal categories to generate Likert scale item responses. This is
particularly useful for accurately modeling and analyzing survey data
that use Likert scales, especially when applying statistical techniques
that require metric data.</p>
<h2 id="installation">Installation</h2>
<p>You can install the released version from CRAN:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"latent2likert"</span>)</span></code></pre></div>
<p>Or the latest development version from GitHub:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a>devtools<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">"markolalovic/latent2likert"</span>)</span></code></pre></div>
<h2 id="dependencies">Dependencies</h2>
<p>To keep the package lightweight, <strong>latent2likert</strong> only
imports <a href="https://cran.r-project.org/package=mvtnorm">mvtnorm</a>, along
with the standard R packages stats and graphics, which are typically
included in R releases. An additional suggested dependency is the
package <a href="https://cran.r-project.org/package=sn">sn</a>, which is
required only for generating random responses from correlated Likert
items based on a multivariate skew normal distribution. The package
prompts the user to install this dependency during interactive sessions
if needed.</p>
<h2 id="features">Features</h2>
<ul>
<li><code>rlikert</code>: Generates random responses to Likert scale
questions based on specified means and standard deviations of latent
variables, with optional settings for skewness and correlations.</li>
<li><code>estimate_params</code>: Estimates latent parameters from
existing survey data.</li>
</ul>
<h2 id="structure">Structure</h2>
<figure>
<img role="img" aria-label="Overview of inputs and outputs" src="" width="80%" alt="Overview of inputs and outputs" />
<figcaption>
<p><em>Overview of inputs and outputs.</em></p>
</figcaption>
</figure>
<h2 id="using-rlikert">Using <code>rlikert</code></h2>
<p>You can use the <code>rlikert</code> function to simulate Likert item
responses.</p>
<p>To generate a sample of random responses to one item on a 5-point
Likert scale, use:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">library</span>(latent2likert)</span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a><span class="fu">rlikert</span>(<span class="at">size =</span> <span class="dv">10</span>, <span class="at">n_items =</span> <span class="dv">1</span>, <span class="at">n_levels =</span> <span class="dv">5</span>)</span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a><span class="co">#> [1] 1 3 3 3 2 4 1 3 3 1</span></span></code></pre></div>
<p>To generate responses to multiple items with specified
parameters:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">rlikert</span>(<span class="at">size =</span> <span class="dv">10</span>,</span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a> <span class="at">n_items =</span> <span class="dv">3</span>,</span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a> <span class="at">n_levels =</span> <span class="fu">c</span>(<span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">6</span>),</span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a> <span class="at">mean =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="sc">-</span><span class="dv">1</span>, <span class="dv">0</span>), </span>
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a> <span class="at">sd =</span> <span class="fu">c</span>(<span class="fl">0.8</span>, <span class="dv">1</span>, <span class="dv">1</span>),</span>
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a> <span class="at">corr =</span> <span class="fl">0.5</span>)</span>
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a><span class="co">#> Y1 Y2 Y3</span></span>
<span id="cb4-8"><a href="#cb4-8" tabindex="-1"></a><span class="co">#> [1,] 2 1 3</span></span>
<span id="cb4-9"><a href="#cb4-9" tabindex="-1"></a><span class="co">#> [2,] 2 2 2</span></span>
<span id="cb4-10"><a href="#cb4-10" tabindex="-1"></a><span class="co">#> [3,] 4 3 2</span></span>
<span id="cb4-11"><a href="#cb4-11" tabindex="-1"></a><span class="co">#> [4,] 3 3 4</span></span>
<span id="cb4-12"><a href="#cb4-12" tabindex="-1"></a><span class="co">#> [5,] 4 5 6</span></span>
<span id="cb4-13"><a href="#cb4-13" tabindex="-1"></a><span class="co">#> [6,] 2 1 4</span></span>
<span id="cb4-14"><a href="#cb4-14" tabindex="-1"></a><span class="co">#> [7,] 1 2 3</span></span>
<span id="cb4-15"><a href="#cb4-15" tabindex="-1"></a><span class="co">#> [8,] 3 1 6</span></span>
<span id="cb4-16"><a href="#cb4-16" tabindex="-1"></a><span class="co">#> [9,] 3 3 4</span></span>
<span id="cb4-17"><a href="#cb4-17" tabindex="-1"></a><span class="co">#> [10,] 3 2 6</span></span></code></pre></div>
<p>You can also provide a correlation matrix:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a>corr <span class="ot"><-</span> <span class="fu">matrix</span>(<span class="fu">c</span>(<span class="fl">1.00</span>, <span class="sc">-</span><span class="fl">0.63</span>, <span class="sc">-</span><span class="fl">0.39</span>, </span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a> <span class="sc">-</span><span class="fl">0.63</span>, <span class="fl">1.00</span>, <span class="fl">0.41</span>, </span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a> <span class="sc">-</span><span class="fl">0.39</span>, <span class="fl">0.41</span>, <span class="fl">1.00</span>), <span class="at">nrow=</span><span class="dv">3</span>)</span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a>data <span class="ot"><-</span> <span class="fu">rlikert</span>(<span class="at">size =</span> <span class="dv">10</span><span class="sc">^</span><span class="dv">3</span>,</span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a> <span class="at">n_items =</span> <span class="dv">3</span>,</span>
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a> <span class="at">n_levels =</span> <span class="fu">c</span>(<span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">6</span>),</span>
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a> <span class="at">mean =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="sc">-</span><span class="dv">1</span>, <span class="dv">0</span>), </span>
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a> <span class="at">sd =</span> <span class="fu">c</span>(<span class="fl">0.8</span>, <span class="dv">1</span>, <span class="dv">1</span>),</span>
<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a> <span class="at">corr =</span> corr)</span></code></pre></div>
<p>Note that the correlations among the Likert response variables are
only estimates of the actual correlations between the latent variables,
and these estimates are typically lower:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="fu">cor</span>(data)</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a><span class="co">#> Y1 Y2 Y3</span></span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a><span class="co">#> Y1 1.0000000 -0.5774145 -0.3838274</span></span>
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a><span class="co">#> Y2 -0.5774145 1.0000000 0.3856997</span></span>
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a><span class="co">#> Y3 -0.3838274 0.3856997 1.0000000</span></span></code></pre></div>
<h2 id="using-estimate_params">Using <code>estimate_params</code></h2>
<p>Given the data, you can estimate the values of latent parameters
using:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="fu">estimate_params</span>(data, <span class="at">n_levels =</span> <span class="fu">c</span>(<span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">6</span>), <span class="at">skew =</span> <span class="dv">0</span>)</span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a><span class="co">#> items</span></span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="co">#> estimates Y1 Y2 Y3</span></span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="co">#> mean -0.0526979746 -0.9696916596 -0.0009229545</span></span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="co">#> sd 0.8163184862 1.0533629380 1.0381389630</span></span></code></pre></div>
<h2 id="transformation">Transformation</h2>
<p>To visualize the transformation, you can use
<code>plot_likert_transform()</code>. It plots the densities of latent
variables in the first row and transformed discrete probability
distributions below:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">plot_likert_transform</span>(<span class="at">n_items =</span> <span class="dv">3</span>,</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a> <span class="at">n_levels =</span> <span class="dv">5</span>,</span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a> <span class="at">mean =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="sc">-</span><span class="dv">1</span>, <span class="dv">0</span>), </span>
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a> <span class="at">sd =</span> <span class="fu">c</span>(<span class="fl">0.8</span>, <span class="dv">1</span>, <span class="dv">1</span>), </span>
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a> <span class="at">skew =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="fl">0.5</span>))</span></code></pre></div>
<figure>
<img role="img" aria-label="Transformation of latent variables to Likert response variables" src="" width="80%" alt="Transformation of latent variables to Likert response variables" />
<figcaption>
<p><em>Transformation of latent variables to Likert response
variables.</em></p>
</figcaption>
</figure>
<br>
<p>Note that, depending on the value of the skewness parameter, the
normal latent distribution is used if skew = 0, otherwise the skew
normal distribution is used. The value of skewness is restricted to the
range -0.95 to 0.95, that is</p>
<blockquote>
<p><code>skew >= -0.95</code> and <code>skew <= 0.95</code>.</p>
</blockquote>
<h2 id="further-reading">Further Reading</h2>
<ul>
<li>For more detailed information and practical examples, please refer
to the package <a href="https://lalovic.io/latent2likert/articles/using_latent2likert.html">vignette</a>.</li>
<li>The implemented algorithms are described in the functions <a href="https://lalovic.io/latent2likert/reference/index.html">reference</a>.</li>
</ul>
<h2 id="related-r-packages">Related R Packages</h2>
<p>Alternatively, you can simulate Likert item responses using the
<code>draw_likert</code> function from the <a href="https://CRAN.R-project.org/package=fabricatr">fabricatr</a>
package. This function recodes a latent variable into a Likert response
variable by specifying intervals that subdivide the continuous range.
The <strong>latent2likert</strong> package, however, offers an advantage
by automatically calculating optimal intervals that minimize distortion
between the latent variable and the Likert response variable for both
normal and skew normal latent distributions, eliminating the need to
manually specify the intervals.</p>
<p>There are also several alternative approaches that do not rely on
latent distributions. One method involves directly defining a discrete
probability distribution and sampling from it using the
<code>sample</code> function in R or the <code>likert</code> function
from the <a href="https://CRAN.R-project.org/package=wakefield">wakefield</a>
package. Another approach is to specify the means, standard deviations,
and correlations among Likert response variables. For this, you can use
<a href="https://CRAN.R-project.org/package=LikertMakeR">LikertMakeR</a>
or <a href="https://CRAN.R-project.org/package=SimCorMultRes">SimCorMultRes</a>
to generate correlated multinomial responses.</p>
<p>Additionally, you can define a data generating process. For those
familiar with item response theory, the <a href="https://CRAN.R-project.org/package=mirt">mirt</a> package allows
users to specify discrimination and difficulty parameters for each
response category.</p>
</body>
</html>