This repository has been archived by the owner on Sep 30, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 249
/
rnn_train_steteistuple.py
157 lines (132 loc) · 6.79 KB
/
rnn_train_steteistuple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# encoding: UTF-8
# Copyright 2017 Google.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
from tensorflow.contrib import layers
from tensorflow.contrib import rnn # rnn stuff temporarily in contrib, moving back to code in TF 1.1
import os
import time
import math
import my_txtutils as txt
tf.set_random_seed(0)
# Full comments in rnn_train.py
# This file implements the exact same model but using the state_is_tuple=True
# option in tf.nn.rnn_cell.MultiRNNCell. This option is enabled by default.
# It produces faster code (by ~10%) but handling the state as a tuple is bit
# more cumbersome. Search for comments containing "state_is_tuple=True" for
# details.
SEQLEN = 30
BATCHSIZE = 100
ALPHASIZE = txt.ALPHASIZE
INTERNALSIZE = 512
NLAYERS = 3
learning_rate = 0.001 # fixed learning rate
# load data, either shakespeare, or the Python source of Tensorflow itself
shakedir = "shakespeare/*.txt"
# shakedir = "../tensorflow/**/*.py"
codetext, valitext, bookranges = txt.read_data_files(shakedir, validation=False)
# display some stats on the data
epoch_size = len(codetext) // (BATCHSIZE * SEQLEN)
txt.print_data_stats(len(codetext), len(valitext), epoch_size)
#
# the model
#
lr = tf.placeholder(tf.float32, name='lr') # learning rate
batchsize = tf.placeholder(tf.int32, name='batchsize')
# inputs
X = tf.placeholder(tf.uint8, [None, None], name='X') # [ BATCHSIZE, SEQLEN ]
Xo = tf.one_hot(X, ALPHASIZE, 1.0, 0.0) # [ BATCHSIZE, SEQLEN, ALPHASIZE ]
# expected outputs = same sequence shifted by 1 since we are trying to predict the next character
Y_ = tf.placeholder(tf.uint8, [None, None], name='Y_') # [ BATCHSIZE, SEQLEN ]
Yo_ = tf.one_hot(Y_, ALPHASIZE, 1.0, 0.0) # [ BATCHSIZE, SEQLEN, ALPHASIZE ]
cells = [rnn.GRUCell(INTERNALSIZE) for _ in range(NLAYERS)]
multicell = rnn.MultiRNNCell(cells, state_is_tuple=True)
# When using state_is_tuple=True, you must use multicell.zero_state
# to create a tuple of placeholders for the input states (one state per layer).
# When executed using session.run(zerostate), this also returns the correctly
# shaped initial zero state to use when starting your training loop.
zerostate = multicell.zero_state(BATCHSIZE, dtype=tf.float32)
Yr, H = tf.nn.dynamic_rnn(multicell, Xo, dtype=tf.float32, initial_state=zerostate)
# Yr: [ BATCHSIZE, SEQLEN, INTERNALSIZE ]
# H: [ BATCHSIZE, INTERNALSIZE*NLAYERS ] # this is the last state in the sequence
H = tf.identity(H, name='H') # just to give it a name
# Softmax layer implementation:
# Flatten the first two dimension of the output [ BATCHSIZE, SEQLEN, ALPHASIZE ] => [ BATCHSIZE x SEQLEN, ALPHASIZE ]
# then apply softmax readout layer. This way, the weights and biases are shared across unrolled time steps.
# From the readout point of view, a value coming from a cell or a minibatch is the same thing
Yflat = tf.reshape(Yr, [-1, INTERNALSIZE]) # [ BATCHSIZE x SEQLEN, INTERNALSIZE ]
Ylogits = layers.linear(Yflat, ALPHASIZE) # [ BATCHSIZE x SEQLEN, ALPHASIZE ]
Yflat_ = tf.reshape(Yo_, [-1, ALPHASIZE]) # [ BATCHSIZE x SEQLEN, ALPHASIZE ]
loss = tf.nn.softmax_cross_entropy_with_logits(logits=Ylogits, labels=Yflat_) # [ BATCHSIZE x SEQLEN ]
loss = tf.reshape(loss, [batchsize, -1]) # [ BATCHSIZE, SEQLEN ]
Yo = tf.nn.softmax(Ylogits, name='Yo') # [ BATCHSIZE x SEQLEN, ALPHASIZE ]
Y = tf.argmax(Yo, 1) # [ BATCHSIZE x SEQLEN ]
Y = tf.reshape(Y, [batchsize, -1], name="Y") # [ BATCHSIZE, SEQLEN ]
train_step = tf.train.AdamOptimizer(lr).minimize(loss)
# stats for display
seqloss = tf.reduce_mean(loss, 1)
batchloss = tf.reduce_mean(seqloss)
accuracy = tf.reduce_mean(tf.cast(tf.equal(Y_, tf.cast(Y, tf.uint8)), tf.float32))
loss_summary = tf.summary.scalar("batch_loss", batchloss)
acc_summary = tf.summary.scalar("batch_accuracy", accuracy)
summaries = tf.summary.merge([loss_summary, acc_summary])
# Init Tensorboard stuff. This will save Tensorboard information into a different
# folder at each run named 'log/<timestamp>/'.
timestamp = str(math.trunc(time.time()))
summary_writer = tf.summary.FileWriter("log/" + timestamp + "-training")
# Init for saving models. They will be saved into a directory named 'checkpoints'.
# Only the last checkpoint is kept.
if not os.path.exists("checkpoints"):
os.mkdir("checkpoints")
saver = tf.train.Saver(max_to_keep=1)
# for display: init the progress bar
DISPLAY_FREQ = 50
_50_BATCHES = DISPLAY_FREQ * BATCHSIZE * SEQLEN
progress = txt.Progress(DISPLAY_FREQ, size=111+2, msg="Training on next "+str(DISPLAY_FREQ)+" batches")
# init
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
step = 0
# training loop
istate = sess.run(zerostate) # initial zero input state (a tuple)
for x, y_, epoch in txt.rnn_minibatch_sequencer(codetext, BATCHSIZE, SEQLEN, nb_epochs=1000):
# train on one minibatch
feed_dict = {X: x, Y_: y_, lr: learning_rate, batchsize: BATCHSIZE}
# This is how you add the input state to feed dictionary when state_is_tuple=True.
# zerostate is a tuple of the placeholders for the NLAYERS=3 input states of our
# multi-layer RNN cell. Those placeholders must be used as keys in feed_dict.
# istate is a tuple holding the actual values of the input states (one per layer).
# Iterate on the input state placeholders and use them as keys in the dictionary
# to add actual input state values.
for i, v in enumerate(zerostate):
feed_dict[v] = istate[i]
_, y, ostate, smm = sess.run([train_step, Y, H, summaries], feed_dict=feed_dict)
# save training data for Tensorboard
summary_writer.add_summary(smm, step)
# display a visual validation of progress (every 50 batches)
if step % _50_BATCHES == 0:
feed_dict = {X: x, Y_: y_, batchsize: BATCHSIZE} # no dropout for validation
for i, v in enumerate(zerostate):
feed_dict[v] = istate[i]
y, l, bl, acc = sess.run([Y, seqloss, batchloss, accuracy], feed_dict=feed_dict)
txt.print_learning_learned_comparison(x[:5], y, l, bookranges, bl, acc, epoch_size, step, epoch)
# save a checkpoint (every 500 batches)
if step // 10 % _50_BATCHES == 0:
saver.save(sess, 'checkpoints/rnn_train_' + timestamp, global_step=step)
# display progress bar
progress.step(reset=step % _50_BATCHES == 0)
# loop state around
istate = ostate
step += BATCHSIZE * SEQLEN