-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_partseg_shapenet_multigpu.py
566 lines (472 loc) · 26.2 KB
/
train_partseg_shapenet_multigpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
"""
Author: AruniRC
Date: Feb 2019
"""
import argparse
import os
import os.path as osp
import data_utils
from data_utils.ShapeNetDataLoader import PartNormalDataset, SelfSupPartNormalDataset, ACDSelfSupDataset
from tensorboard_logger import configure, log_value
import itertools
import torch
from torch import nn
import datetime
import logging
from pathlib import Path
import sys
import importlib
import shutil
from tqdm import tqdm
import provider
import numpy as np
torch.backends.cudnn.enabled = False
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35],
'Rocket': [41, 42, 43], 'Car': [8, 9, 10, 11], 'Laptop': [28, 29],
'Cap': [6, 7], 'Skateboard': [44, 45, 46], 'Mug': [36, 37],
'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27],
'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40],
'Chair': [12, 13, 14, 15], 'Knife': [22, 23]}
seg_label_to_cat = {} # {0:Airplane, 1:Airplane, ...49:Table}
for cat in seg_classes.keys():
for label in seg_classes[cat]:
seg_label_to_cat[label] = cat
def to_categorical(y, num_classes):
""" 1-hot encodes a tensor """
new_y = torch.eye(num_classes)[y.cpu().data.numpy(),]
if (y.is_cuda):
return new_y.cuda()
return new_y
def train_init_class(classifier, criterion, trainDataLoader, num_classes, num_part):
""" Pre-train the classifier layer using logistic regression """
optim = torch.optim.SGD(classifier.conv2.parameters(), lr=0.1, momentum=0.5)
num_epoch = 500
for epoch in range(num_epoch):
print('Init Classifier: Epoch (%d/%d):' % (epoch + 1, num_epoch))
mean_correct = []
mean_loss = []
for batch_id, (points, label, target) in enumerate(trainDataLoader):
cur_batch_size, NUM_POINT, _ = points.size()
points = points.data.numpy()
points[:,:, 0:3] = provider.random_scale_point_cloud(points[:,:, 0:3])
points[:,:, 0:3] = provider.shift_point_cloud(points[:,:, 0:3])
points = torch.Tensor(points)
points, label, target = points.float().cuda(), label.long().cuda(), target.long().cuda()
points = points.transpose(2, 1)
optim.zero_grad()
classifier = classifier.eval() # batch stats aren't updated
'''applying supervised cross-entropy loss'''
seg_pred, trans_feat, feat = classifier(points, to_categorical(label, num_classes))
seg_pred = seg_pred.contiguous().view(-1, num_part)
target = target.view(-1, 1)[:, 0]
pred_choice = seg_pred.data.max(1)[1]
correct = pred_choice.eq(target.data).cpu().sum()
mean_correct.append(correct.item() / (cur_batch_size * NUM_POINT))
loss = criterion(seg_pred, target, trans_feat)
loss.backward()
optim.step()
mean_loss.append(loss.item())
print('classifier: batch (%d/%s) Loss: %f Acc:%f' % (batch_id,
len(trainDataLoader),
loss.item(),
mean_correct[-1]))
log_value('init_cls_loss', np.mean(mean_loss), epoch)
log_value('init_cls_acc', np.mean(mean_correct), epoch)
# print('Epoch: %d Accuracy: %f' % (epoch+1, np.mean(mean_correct)))
classifier = classifier.train()
return classifier
def parse_args():
parser = argparse.ArgumentParser('Train PointNet++ PartSeg Model')
parser.add_argument('--model', type=str, default='pointnet2_part_seg_msg', help='model name [default: pointnet2_part_seg_msg]')
parser.add_argument('--batch_size', type=int, default=16, help='Batch Size during training [default: 16]')
parser.add_argument('--epoch', default=251, type=int, help='Epoch to run [default: 251]')
parser.add_argument('--learning_rate', default=0.001, type=float, help='Initial learning rate [default: 0.001]')
parser.add_argument('--gpu', type=str, default=None, help='GPU to use [default: None]')
parser.add_argument('--cudnn_off', action='store_true', default=False, help='disable CuDNN [default: False]')
parser.add_argument('--seed', type=int, default=0, help='Seed for multiple runs [default: 0]')
parser.add_argument('--optimizer', type=str, default='Adam', help='Adam or SGD [default: Adam]')
parser.add_argument('--log_dir', type=str, default='pointnet2_part_seg_msg', help='Log path')
parser.add_argument('--decay_rate', type=float, default=1e-4, help='weight decay [default: 1e-4]')
parser.add_argument('--npoint', type=int, default=2048, help='Point Number [default: 2048]')
parser.add_argument('--normal', action='store_true', default=False, help='use normal information [default: False]')
parser.add_argument('--category', action='store_true', default=False, help='use category label information [default: False]')
parser.add_argument('--l2_norm', action='store_true', default=False, help='unit-normalize features [default: False]')
parser.add_argument('--step_size', type=int, default=20, help='Decay step for lr decay [default: every 20 epochs]')
parser.add_argument('--lr_decay', type=float, default=0.5, help='Decay rate for lr decay [default: 0.5]')
parser.add_argument('--dgcnn_k', type=int, default=20, help='DGCNN k [default: 20]')
parser.add_argument('--num_classes', type=int, default=16, help='Number of shape classes [default: 16]')
parser.add_argument('--num_parts', type=int, default=50, help='Number of part classes [default: 50]')
# self-supervised loss setting
parser.add_argument('--selfsup', action='store_true', default=False, help='use self-sup data [default: False]')
parser.add_argument('--margin', type=float, default=0.5, help='contrastive loss margin [default: 0.5]')
parser.add_argument('--lmbda', type=float, default=10.0, help='weight on self-sup loss [default: 10]')
parser.add_argument('--n_cls_selfsup', type=int, default=-1, help='self-sup samples per class [default: -1, all samples]')
parser.add_argument('--ss_dataset', type=str, default='acd', help='self-sup dataset [default: acd]')
parser.add_argument('--ss_path', type=str, default='/srv/data2/mgadelha/ShapeNetACD/', help='self-sup dataset location [default: dummy]')
parser.add_argument('--retain_overlaps', action='store_true', default=False, help='keep overlapping shapes with labeled data [default: False]')
# annealing the weight of the self-sup loss (lambda)
parser.add_argument('--anneal_lambda', action='store_true', default=False, help='anneal lambda value [default: False]')
parser.add_argument('--anneal_step',type=int, default=5, help='anneal lambda epochs [default: 10]')
parser.add_argument('--anneal_rate',type=float, default=0.5, help='anneal lambda epochs [default: 10]')
# few-shot setting
parser.add_argument('--k_shot', type=int, default=-1, help='few shot samples [default: -1, all samples]')
parser.add_argument('--pretrained', type=str, default=None, help='pre-trained model path [default: None]')
parser.add_argument('--init_cls', action='store_true', default=False, help='pre-train classifier layers [default: False]')
return parser.parse_args()
def main(args):
def log_string(str):
logger.info(str)
print(str)
'''CUDA ENV SETTINGS'''
if args.gpu is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
if args.cudnn_off:
torch.backends.cudnn.enabled = False # needed on gypsum!
# --------------------------------------------------------------------------
'''CREATE DIR'''
# --------------------------------------------------------------------------
timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'))
experiment_dir = Path('./log/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath('part_seg_shapenet')
experiment_dir.mkdir(exist_ok=True)
if args.log_dir is None:
experiment_dir = experiment_dir.joinpath(timestr)
else:
# if args.k_shot > 0:
dir_name = args.model + '_ShapeNet' + \
'_k-%d_seed-%d_lr-%.6f_lr-step-%d_lr-decay-%.2f_wt-decay-%.6f_l2norm-%d' \
% ( args.k_shot, args.seed, args.learning_rate,
args.step_size, args.lr_decay, args.decay_rate,
int(args.l2_norm) )
if args.normal:
dir_name = dir_name + '_normals'
if args.category:
dir_name = dir_name + '_category-label'
if args.selfsup:
dir_name = dir_name + '_selfsup-%s_margin-%.2f_lambda-%.2f' \
% (args.ss_dataset, args.margin, args.lmbda)
if args.anneal_lambda:
dir_name = dir_name + '_anneal-lambda_step-%d_rate-%.2f' \
% (args.anneal_step, args.anneal_rate)
experiment_dir = experiment_dir.joinpath(dir_name)
# else:
# experiment_dir = experiment_dir.joinpath(args.log_dir)
experiment_dir.mkdir(exist_ok=True)
checkpoints_dir = experiment_dir.joinpath('checkpoints/')
checkpoints_dir.mkdir(exist_ok=True)
log_dir = experiment_dir.joinpath('logs/')
log_dir.mkdir(exist_ok=True)
# --------------------------------------------------------------------------
'''LOG'''
# --------------------------------------------------------------------------
args = parse_args()
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/%s.txt' % (log_dir, args.model))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETERS ...')
log_string(args)
configure(log_dir) # tensorboard logdir
# --------------------------------------------------------------------------
'''DATA LOADERS'''
# --------------------------------------------------------------------------
root = 'data/shapenetcore_partanno_segmentation_benchmark_v0_normal/'
TRAIN_DATASET = PartNormalDataset(root = root, npoints=args.npoint, split='trainval',
normal_channel=args.normal, k_shot=args.k_shot)
trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=args.batch_size,
shuffle=True, num_workers=4)
trainDataIterator = iter(trainDataLoader)
TEST_DATASET = PartNormalDataset(root = root, npoints=args.npoint, split='test',
normal_channel=args.normal)
testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=args.batch_size,
shuffle=False, num_workers=4)
log_string("The number of training data is: %d" % len(TRAIN_DATASET))
log_string("The number of test data is: %d" % len(TEST_DATASET))
num_classes = args.num_classes
num_part = args.num_parts
if args.selfsup:
log_string('Use self-supervision - alternate batches')
if not args.retain_overlaps:
log_string('\tRemove overlaps between labeled and self-sup datasets')
labeled_fns = list(itertools.chain(*TEST_DATASET.meta.values())) \
+ list(itertools.chain(*TRAIN_DATASET.meta.values()))
else:
log_string('\tUse all files in self-sup dataset')
labeled_fns = []
if args.ss_dataset == 'dummy':
log_string('Using "dummy" self-supervision dataset (rest of labeled ShapeNetSeg)')
SELFSUP_DATASET = SelfSupPartNormalDataset(root = root, npoints=args.npoint,
split='trainval', normal_channel=args.normal,
k_shot=args.n_cls_selfsup, labeled_fns=labeled_fns)
elif args.ss_dataset == 'acd':
log_string('Using "ACD" self-supervision dataset (ShapeNet Seg)')
ACD_ROOT = args.ss_path
SELFSUP_DATASET = ACDSelfSupDataset(root = ACD_ROOT, npoints=args.npoint,
normal_channel=args.normal,
k_shot=args.n_cls_selfsup,
exclude_fns=labeled_fns)
selfsupDataLoader = torch.utils.data.DataLoader(SELFSUP_DATASET,
batch_size=args.batch_size,
shuffle=True, num_workers=4)
selfsupIterator = iter(selfsupDataLoader)
# --------------------------------------------------------------------------
'''MODEL LOADING'''
# --------------------------------------------------------------------------
MODEL = importlib.import_module(args.model)
shutil.copy('models/%s.py' % args.model, str(experiment_dir))
shutil.copy('models/pointnet_util.py', str(experiment_dir))
if 'dgcnn' in args.model:
print('DGCNN params')
classifier = MODEL.get_model(num_part, normal_channel=args.normal, k=args.dgcnn_k).cuda()
else:
classifier = MODEL.get_model(num_part, normal_channel=args.normal).cuda()
criterion = MODEL.get_loss().cuda()
if args.selfsup:
selfsupCriterion = MODEL.get_selfsup_loss(margin=args.margin).cuda()
log_string("The number of self-sup data is: %d" % len(SELFSUP_DATASET))
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
torch.nn.init.xavier_normal_(m.weight.data)
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find('Linear') != -1:
torch.nn.init.xavier_normal_(m.weight.data)
torch.nn.init.constant_(m.bias.data, 0.0)
if args.pretrained is None:
# Default: load saved checkpoint from experiment_dir or start from scratch
try:
checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth')
start_epoch = checkpoint['epoch']
classifier.load_state_dict(checkpoint['model_state_dict'])
log_string('Use pretrained model from checkpoints')
except:
log_string('No existing model, starting training from scratch...')
start_epoch = 0
classifier = classifier.apply(weights_init)
else:
# Path to a pre-trained model is provided (self-sup)
log_string('Loading pretrained model from %s' % args.pretrained)
start_epoch = 0
ckpt = torch.load(args.pretrained)
classifier.load_state_dict(ckpt['model_state_dict'])
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(
classifier.parameters(),
lr=args.learning_rate,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.decay_rate
)
else:
optimizer = torch.optim.SGD(classifier.parameters(), lr=args.learning_rate, momentum=0.9)
def bn_momentum_adjust(m, momentum):
if isinstance(m, torch.nn.BatchNorm2d) or isinstance(m, torch.nn.BatchNorm1d):
m.momentum = momentum
LEARNING_RATE_CLIP = 1e-5
MOMENTUM_ORIGINAL = 0.1
MOMENTUM_DECAY = 0.5
MOMENTUM_DECAY_STEP = args.step_size
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
classifier = nn.DataParallel(classifier)
# --------------------------------------------------------------------------
''' MODEL TRAINING '''
# --------------------------------------------------------------------------
best_acc = 0
global_epoch = 0
if args.pretrained is not None:
if args.init_cls:
# Initialize the last layer of loaded model using logistic regression
classifier = train_init_class(classifier, criterion, trainDataLoader, num_classes, num_part)
for epoch in range(start_epoch,args.epoch):
log_string('Epoch %d (%d/%s):' % (global_epoch + 1, epoch + 1, args.epoch))
'''Adjust learning rate and BN momentum'''
lr = max(args.learning_rate * (args.lr_decay ** (epoch // args.step_size)), LEARNING_RATE_CLIP)
log_string('Learning rate:%f' % lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
mean_correct = []
momentum = MOMENTUM_ORIGINAL * (MOMENTUM_DECAY ** (epoch // MOMENTUM_DECAY_STEP))
if momentum < 0.01:
momentum = 0.01
print('BN momentum updated to: %f' % momentum)
classifier = classifier.apply(lambda x: bn_momentum_adjust(x,momentum))
''' Adjust (anneal) self-sup lambda '''
if args.anneal_lambda:
lmbda = args.lmbda * (args.anneal_rate ** (epoch // args.anneal_step))
else:
lmbda = args.lmbda
'''learning one epoch'''
num_iters = len(trainDataLoader) # num iters in an epoch
if args.selfsup:
num_iters = len(selfsupDataLoader) # calc an epoch based on self-sup dataset
for i in tqdm(list(range(num_iters)), total=num_iters, smoothing=0.9, desc='Training'):
# ------------------------------------------------------------------
# SUPERVISED LOSS
# ------------------------------------------------------------------
try:
data = next(trainDataIterator)
except StopIteration:
# reached end of this dataloader
trainDataIterator = iter(trainDataLoader)
data = next(trainDataIterator)
points, label, target = data
cur_batch_size, NUM_POINT, _ = points.size()
points = points.data.numpy()
points[:,:, 0:3] = provider.random_scale_point_cloud(points[:,:, 0:3])
points[:,:, 0:3] = provider.shift_point_cloud(points[:,:, 0:3])
points = torch.Tensor(points)
points, label, target = points.float().cuda(), label.long().cuda(), target.long().cuda()
points = points.transpose(2, 1)
if args.category:
category_label = to_categorical(label, num_classes).contiguous()
else:
category_label = torch.zeros([label.shape[0], 1, num_classes]).cuda()
optimizer.zero_grad()
classifier = classifier.train()
'''applying supervised cross-entropy loss'''
seg_pred, trans_feat, feat = classifier(points.contiguous(), category_label)
seg_pred = seg_pred.contiguous().view(-1, num_part)
target = target.view(-1, 1)[:, 0]
pred_choice = seg_pred.data.max(1)[1]
correct = pred_choice.eq(target.data).cpu().sum()
mean_correct.append(correct.item() / (cur_batch_size * NUM_POINT))
loss = criterion(seg_pred, target, trans_feat)
loss.backward()
optimizer.step()
# ------------------------------------------------------------------
# SELF-SUPERVISED LOSS
# ------------------------------------------------------------------
if args.selfsup:
try:
data_ss = next(selfsupIterator)
except StopIteration:
# reached end of this dataloader
selfsupIterator = iter(selfsupDataLoader)
data_ss = next(selfsupIterator)
points, label, target = data_ss
points = points.data.numpy()
points[:,:, 0:3] = provider.random_scale_point_cloud(points[:,:, 0:3])
points[:,:, 0:3] = provider.shift_point_cloud(points[:,:, 0:3])
points = torch.Tensor(points)
points, label, target = points.float().cuda(), label.long().cuda(), target.long().cuda()
points = points.transpose(2, 1)
# for self-sup category label is always unknown, so always zeros:
category_label = torch.zeros([label.shape[0], 1, num_classes]).cuda()
if args.normal:
# put dummy cols of zeros for normals in self-sup data
cur_batch_size, _, NUM_POINT = points.size()
points = points[:,0:3,:]
points = torch.cat([points, torch.zeros([cur_batch_size, 3, NUM_POINT]).cuda()], 1)
optimizer.zero_grad()
classifier = classifier.train()
'''applying self-supervised constrastive (pairwise) loss'''
_, _, feat = classifier(points, category_label)
ss_loss = selfsupCriterion(feat, target) * lmbda
ss_loss.backward()
optimizer.step()
# ----------------------------------------------------------------------
# Logging metrics after one epoch
# ----------------------------------------------------------------------
train_instance_acc = np.mean(mean_correct)
log_string('Train accuracy is: %.5f' % train_instance_acc)
log_string('Supervised loss is: %.5f' % loss.data)
log_value('train_loss', loss.data, epoch)
if args.selfsup:
log_string('Self-sup loss is: %.5f' % ss_loss.data)
log_value('selfsup_loss', ss_loss.data, epoch)
# save every epoch
savepath = str(checkpoints_dir) + ('/model_%03d.pth' % epoch)
log_string('Saving model at %s' % savepath)
state = {
'epoch': epoch,
'train_acc': train_instance_acc,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
# log_string('Saved model.')
log_value('train_acc', train_instance_acc, epoch)
log_value('train_lr', lr, epoch)
log_value('train_bn_momentum', momentum, epoch)
log_value('selfsup_lambda', lmbda, epoch)
global_epoch+=1
# ----------------------------------------------------------------------
# Evaluation on test-set after completing training epochs
# ----------------------------------------------------------------------
with torch.no_grad():
test_metrics = {}
total_correct = 0
total_seen = 0
total_seen_class = [0 for _ in range(num_part)]
total_correct_class = [0 for _ in range(num_part)]
shape_ious = {cat: [] for cat in seg_classes.keys()}
seg_label_to_cat = {} # {0:Airplane, 1:Airplane, ...49:Table}
for cat in seg_classes.keys():
for label in seg_classes[cat]:
seg_label_to_cat[label] = cat
for batch_id, (points, label, target) in tqdm(enumerate(testDataLoader),
total=len(testDataLoader),
smoothing=0.9, desc='Evaluation'):
cur_batch_size, NUM_POINT, _ = points.size()
points, label, target = points.float().cuda(), label.long().cuda(), target.long().cuda()
points = points.transpose(2, 1)
if args.category:
category_label = to_categorical(label, num_classes).contiguous()
else:
category_label = torch.zeros([label.shape[0], 1, num_classes]).cuda()
classifier = classifier.eval()
seg_pred, _, _ = classifier(points, to_categorical(label, num_classes))
cur_pred_val = seg_pred.cpu().data.numpy()
cur_pred_val_logits = cur_pred_val
cur_pred_val = np.zeros((cur_batch_size, NUM_POINT)).astype(np.int32)
target = target.cpu().data.numpy()
for i in range(cur_batch_size):
cat = seg_label_to_cat[target[i, 0]]
logits = cur_pred_val_logits[i, :, :]
cur_pred_val[i, :] = np.argmax(logits[:, seg_classes[cat]], 1) + seg_classes[cat][0]
correct = np.sum(cur_pred_val == target)
total_correct += correct
total_seen += (cur_batch_size * NUM_POINT)
for l in range(num_part):
total_seen_class[l] += np.sum(target == l)
total_correct_class[l] += (np.sum((cur_pred_val == l) & (target == l)))
for i in range(cur_batch_size):
segp = cur_pred_val[i, :]
segl = target[i, :]
cat = seg_label_to_cat[segl[0]]
part_ious = [0.0 for _ in range(len(seg_classes[cat]))]
for l in seg_classes[cat]:
if (np.sum(segl == l) == 0) and (
np.sum(segp == l) == 0): # part is not present, no prediction as well
part_ious[l - seg_classes[cat][0]] = 1.0
else:
part_ious[l - seg_classes[cat][0]] = np.sum((segl == l) & (segp == l)) / float(
np.sum((segl == l) | (segp == l)))
shape_ious[cat].append(np.mean(part_ious))
# print('\nTest IOUS: %f' % np.mean(part_ious))
all_shape_ious = []
for cat in shape_ious.keys():
for iou in shape_ious[cat]:
all_shape_ious.append(iou)
shape_ious[cat] = np.mean(shape_ious[cat])
mean_shape_ious = np.mean(list(shape_ious.values()))
test_metrics['accuracy'] = total_correct / float(total_seen)
test_metrics['class_avg_accuracy'] = np.mean(
np.array(total_correct_class) / np.array(total_seen_class, dtype=np.float))
for cat in sorted(shape_ious.keys()):
log_string('eval mIoU of %s %f' % (cat + ' ' * (14 - len(cat)), shape_ious[cat]))
test_metrics['class_avg_iou'] = mean_shape_ious
test_metrics['instance_avg_iou'] = np.mean(all_shape_ious)
log_string('Epoch %d test Accuracy: %f Class avg mIOU: %f Instance avg mIOU: %f' % (
epoch+1, test_metrics['accuracy'],test_metrics['class_avg_iou'],test_metrics['instance_avg_iou']))
if __name__ == '__main__':
args = parse_args()
main(args)