Skip to content

Latest commit

 

History

History
322 lines (236 loc) · 13.7 KB

CONTRIBUTING.md

File metadata and controls

322 lines (236 loc) · 13.7 KB

Contributing to Rust

Thank you for your interest in contributing to Rust! There are many ways to contribute, and we appreciate all of them. This document is a bit long, so here's links to the major sections:

If you have questions, please make a post on internals.rust-lang.org or hop on #rust-internals.

As a reminder, all contributors are expected to follow our Code of Conduct.

Feature Requests

To request a change to the way that the Rust language works, please open an issue in the RFCs repository rather than this one. New features and other significant language changes must go through the RFC process.

Bug Reports

While bugs are unfortunate, they're a reality in software. We can't fix what we don't know about, so please report liberally. If you're not sure if something is a bug or not, feel free to file a bug anyway.

If you believe reporting your bug publicly represents a security risk to Rust users, please follow our instructions for reporting security vulnerabilities.

If you have the chance, before reporting a bug, please search existing issues, as it's possible that someone else has already reported your error. This doesn't always work, and sometimes it's hard to know what to search for, so consider this extra credit. We won't mind if you accidentally file a duplicate report.

Opening an issue is as easy as following this link and filling out the fields. Here's a template that you can use to file a bug, though it's not necessary to use it exactly:

<short summary of the bug>

I tried this code:

<code sample that causes the bug>

I expected to see this happen: <explanation>

Instead, this happened: <explanation>

## Meta

`rustc --version --verbose`:

Backtrace:

All three components are important: what you did, what you expected, what happened instead. Please include the output of rustc --version --verbose, which includes important information about what platform you're on, what version of Rust you're using, etc.

Sometimes, a backtrace is helpful, and so including that is nice. To get a backtrace, set the RUST_BACKTRACE environment variable to a value other than 0. The easiest way to do this is to invoke rustc like this:

$ RUST_BACKTRACE=1 rustc ...

The Build System

Rust's build system allows you to bootstrap the compiler, run tests & benchmarks, generate documentation, install a fresh build of Rust, and more. It's your best friend when working on Rust, allowing you to compile & test your contributions before submission.

All the configuration for the build system lives in the mk directory in the project root. It can be hard to follow in places, as it uses some advanced Make features which make for some challenging reading. If you have questions on the build system internals, try asking in #rust-internals.

Configuration

Before you can start building the compiler you need to configure the build for your system. In most cases, that will just mean using the defaults provided for Rust. Configuring involves invoking the configure script in the project root.

./configure

There are large number of options accepted by this script to alter the configuration used later in the build process. Some options to note:

  • --enable-debug - Build a debug version of the compiler (disables optimizations, which speeds up compilation of stage1 rustc)
  • --enable-optimize - Enable optimizations (can be used with --enable-debug to make a debug build with optimizations)
  • --disable-valgrind-rpass - Don't run tests with valgrind
  • --enable-clang - Prefer clang to gcc for building dependencies (e.g., LLVM)
  • --enable-ccache - Invoke clang/gcc with ccache to re-use object files between builds
  • --enable-compiler-docs - Build compiler documentation

To see a full list of options, run ./configure --help.

Useful Targets

Some common make targets are:

  • make tips - show useful targets, variables and other tips for working with the build system.
  • make rustc-stage1 - build up to (and including) the first stage. For most cases we don't need to build the stage2 compiler, so we can save time by not building it. The stage1 compiler is a fully functioning compiler and (probably) will be enough to determine if your change works as expected.
  • make $host/stage1/bin/rustc - Where $host is a target triple like x86_64-unknown-linux-gnu. This will build just rustc, without libstd. This is the fastest way to recompile after you changed only rustc source code. Note however that the resulting rustc binary won't have a stdlib to link against by default. You can build libstd once with make rustc-stage1, rustc will pick it up afterwards. libstd is only guaranteed to work if recompiled, so if there are any issues recompile it.
  • make check - build the full compiler & run all tests (takes a while). This is what gets run by the continuous integration system against your pull request. You should run this before submitting to make sure your tests pass & everything builds in the correct manner.
  • make check-stage1-std NO_REBUILD=1 - test the standard library without rebuilding the entire compiler
  • make check TESTNAME=<substring-of-test-name> - Run a matching set of tests.
    • TESTNAME should be a substring of the tests to match against e.g. it could be the fully qualified test name, or just a part of it. TESTNAME=collections::hash::map::test_map::test_capacity_not_less_than_len or TESTNAME=test_capacity_not_less_than_len.
  • make check-stage1-rpass TESTNAME=<substring-of-test-name> - Run a single rpass test with the stage1 compiler (this will be quicker than running the command above as we only build the stage1 compiler, not the entire thing). You can also leave off the -rpass to run all stage1 test types.
  • make check-stage1-coretest - Run stage1 tests in libcore.

Pull Requests

Pull requests are the primary mechanism we use to change Rust. GitHub itself has some great documentation on using the Pull Request feature. We use the 'fork and pull' model described there.

Please make pull requests against the master branch.

Compiling all of make check can take a while. When testing your pull request, consider using one of the more specialized make targets to cut down on the amount of time you have to wait. You need to have built the compiler at least once before running these will work, but that’s only one full build rather than one each time.

$ make -j8 rustc-stage1 && make check-stage1

is one such example, which builds just rustc, and then runs the tests. If you’re adding something to the standard library, try

$ make -j8 check-stage1-std NO_REBUILD=1

This will not rebuild the compiler, but will run the tests.

All pull requests are reviewed by another person. We have a bot, @rust-highfive, that will automatically assign a random person to review your request.

If you want to request that a specific person reviews your pull request, you can add an r? to the message. For example, Steve usually reviews documentation changes. So if you were to make a documentation change, add

r? @steveklabnik

to the end of the message, and @rust-highfive will assign @steveklabnik instead of a random person. This is entirely optional.

After someone has reviewed your pull request, they will leave an annotation on the pull request with an r+. It will look something like this:

@bors: r+ 38fe8d2

This tells @bors, our lovable integration bot, that your pull request has been approved. The PR then enters the merge queue, where @bors will run all the tests on every platform we support. If it all works out, @bors will merge your code into master and close the pull request.

Speaking of tests, Rust has a comprehensive test suite. More information about it can be found here.

Writing Documentation

Documentation improvements are very welcome. The source of doc.rust-lang.org is located in src/doc in the tree, and standard API documentation is generated from the source code itself.

Documentation pull requests function in the same way as other pull requests, though you may see a slightly different form of r+:

@bors: r+ 38fe8d2 rollup

That additional rollup tells @bors that this change is eligible for a 'rollup'. To save @bors some work, and to get small changes through more quickly, when @bors attempts to merge a commit that's rollup-eligible, it will also merge the other rollup-eligible patches too, and they'll get tested and merged at the same time.

To find documentation-related issues, sort by the A-docs label.

In many cases, you don't need a full make doc. You can use rustdoc directly to check small fixes. For example, rustdoc src/doc/reference.md will render reference to doc/reference.html. The CSS might be messed up, but you can verify that the HTML is right.

Issue Triage

Sometimes, an issue will stay open, even though the bug has been fixed. And sometimes, the original bug may go stale because something has changed in the meantime.

It can be helpful to go through older bug reports and make sure that they are still valid. Load up an older issue, double check that it's still true, and leave a comment letting us know if it is or is not. The least recently updated sort is good for finding issues like this.

Contributors with sufficient permissions on the Rust repo can help by adding labels to triage issues:

  • Yellow, A-prefixed labels state which area of the project an issue relates to.

  • Magenta, B-prefixed labels identify bugs which are blockers.

  • Green, E-prefixed labels explain the level of experience necessary to fix the issue.

  • Red, I-prefixed labels indicate the importance of the issue. The I-nominated label indicates that an issue has been nominated for prioritizing at the next triage meeting.

  • Orange, P-prefixed labels indicate a bug's priority. These labels are only assigned during triage meetings, and replace the I-nominated label.

  • Blue, T-prefixed bugs denote which team the issue belongs to.

  • Dark blue, beta- labels track changes which need to be backported into the beta branches.

  • The purple metabug label marks lists of bugs collected by other categories.

If you're looking for somewhere to start, check out the E-easy tag.

Out-of-tree Contributions

There are a number of other ways to contribute to Rust that don't deal with this repository.

Answer questions in #rust, or on users.rust-lang.org, or on StackOverflow.

Participate in the RFC process.

Find a requested community library, build it, and publish it to Crates.io. Easier said than done, but very, very valuable!

Helpful Links and Information

For people new to Rust, and just starting to contribute, or even for more seasoned developers, some useful places to look for information are: