-
Notifications
You must be signed in to change notification settings - Fork 7
/
deepmnist_metal.py
91 lines (72 loc) · 2.97 KB
/
deepmnist_metal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
session = tf.InteractiveSession()
x = tf.placeholder(tf.float32, shape=[None, 784], name="x")
y_ = tf.placeholder(tf.float32, shape=[None, 10])
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
x_image = tf.reshape(x, [-1,28,28,1])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2, name="softmax")
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init = tf.initialize_all_variables()
session.run(init)
for i in range(20000):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1]
})
print("step %d, training accuracy %g" % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
print("test accuracy %g" % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels
}))
with open('W_conv1', 'w') as f:
W_conv1_p = tf.transpose(W_conv1, perm=[3, 0, 1, 2])
f.write(session.run(W_conv1_p).tobytes())
with open('b_conv1', 'w') as f:
f.write(session.run(b_conv1).tobytes())
with open('W_conv2', 'w') as f:
W_conv2_p = tf.transpose(W_conv2, perm=[3, 0, 1, 2])
f.write(session.run(W_conv2_p).tobytes())
with open('b_conv2', 'w') as f:
f.write(session.run(b_conv2).tobytes())
with open('W_fc1', 'w') as f:
W_fc1_shp = tf.reshape(W_fc1, [7,7,64,1024])
W_fc1_p = tf.transpose(W_fc1_shp, perm=[3, 0, 1, 2])
f.write(session.run(W_fc1_p).tobytes())
with open('b_fc1', 'w') as f:
f.write(session.run(b_fc1).tobytes())
with open('W_fc2', 'w') as f:
W_fc2_shp = tf.reshape(W_fc2, [1,1,1024,10])
W_fc2_p = tf.transpose(W_fc2_shp, perm=[3, 0, 1, 2])
f.write(session.run(W_fc2_p).tobytes())
with open('b_fc2', 'w') as f:
f.write(session.run(b_fc2).tobytes())