-
Notifications
You must be signed in to change notification settings - Fork 0
/
infeasible.lp
267 lines (267 loc) · 13.7 KB
/
infeasible.lp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
\ Model VRP_AIMMS
\ LP format - for model browsing. Use MPS format to capture full model detail.
Minimize
0 w0 + 0 x0 + 0 y0,0 + [ 2 ArtP_1st ^2 + 2 ArtN_1st ^2 + 2 ArtP_1st ^2
+ 2 ArtN_1st ^2 + 2 ArtP_1st ^2 + 2 ArtN_1st ^2 + 2 ArtP_1st ^2
+ 2 ArtN_1st ^2 + 2 ArtP_1st ^2 + 2 ArtN_1st ^2 + 2 ArtP_1st ^2
+ 2 ArtN_1st ^2 + 2 ArtP_1st ^2 + 2 ArtN_1st ^2 + 2 ArtP_2nd ^2
+ 2 ArtN_2nd ^2 + 2 ArtP_2nd ^2 + 2 ArtN_2nd ^2 + 2 ArtP_2nd ^2
+ 2 ArtN_2nd ^2 + 2 ArtP_2nd ^2 + 2 ArtN_2nd ^2 + 2 ArtP_2nd ^2
+ 2 ArtN_2nd ^2 + 2 ArtP_2nd ^2 + 2 ArtN_2nd ^2 + 2 ArtP_2nd ^2
+ 2 ArtN_2nd ^2 + 2 ArtN_3rd ^2 + 2 ArtP_4a ^2 + 2 ArtN_4b ^2
+ 2 ArtN_5th ^2 + 2 ArtP_4a ^2 + 2 ArtN_4b ^2 + 2 ArtN_5th ^2
+ 2 ArtP_4a ^2 + 2 ArtN_4b ^2 + 2 ArtN_5th ^2 + 2 ArtP_4a ^2
+ 2 ArtN_4b ^2 + 2 ArtN_5th ^2 + 2 ArtP_4a ^2 + 2 ArtN_4b ^2
+ 2 ArtN_5th ^2 + 2 ArtP_4a ^2 + 2 ArtN_4b ^2 + 2 ArtN_5th ^2
+ 2 ArtP_4a ^2 + 2 ArtN_4b ^2 + 2 ArtN_5th ^2 + 2 ArtP_7th_a ^2
+ 2 ArtN_7th_b ^2 + 2 ArtP_7th_a ^2 + 2 ArtN_7th_b ^2 + 2 ArtP_7th_a ^2
+ 2 ArtN_7th_b ^2 + 2 ArtP_7th_a ^2 + 2 ArtN_7th_b ^2 + 2 ArtP_7th_a ^2
+ 2 ArtN_7th_b ^2 + 2 ArtP_7th_a ^2 + 2 ArtN_7th_b ^2 + 2 ArtP_7th_a ^2
+ 2 ArtN_7th_b ^2 + 2 ArtP_8th ^2 + 2 ArtP_8th ^2 + 2 ArtP_8th ^2
+ 2 ArtP_8th ^2 + 2 ArtP_8th ^2 + 2 ArtP_8th ^2 + 2 ArtP_8th ^2
+ 2 ArtN_9th ^2 + 2 ArtN_9th ^2 + 2 ArtN_9th ^2 + 2 ArtN_9th ^2
+ 2 ArtN_9th ^2 + 2 ArtN_9th ^2 + 2 ArtN_9th ^2 + 2 ArtP_11th ^2
+ 2 ArtP_11th ^2 + 2 ArtP_11th ^2 + 2 ArtP_11th ^2 + 2 ArtP_11th ^2
+ 2 ArtP_11th ^2 + 2 ArtP_11th ^2 + 2 ArtP_12th ^2 + 2 ArtP_12th ^2
+ 2 ArtP_12th ^2 + 2 ArtP_12th ^2 + 2 ArtP_12th ^2 + 2 ArtP_13th ^2
+ 2 ArtP_13th ^2 + 2 ArtP_13th ^2 + 2 ArtP_13th ^2 + 2 ArtP_13th ^2
+ 2 ArtP_13th ^2 + 2 ArtP_13th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2
+ 2 ArtP_10th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_6th ^2 + 2 ArtP_10th ^2 + 2 ArtP_6th ^2 + 2 ArtP_10th ^2
+ 2 ArtP_10th ^2 ] / 2
Subject To
1st: y0,1 + y2,1 + y3,1 + y4,1 + y5,1 + y6,1 + ArtP_1st - ArtN_1st = 1
1st: y0,2 + y1,2 + y3,2 + y4,2 + y5,2 + y6,2 + ArtP_1st - ArtN_1st = 1
1st: y0,3 + y1,3 + y2,3 + y4,3 + y5,3 + y6,3 + ArtP_1st - ArtN_1st = 1
1st: y0,4 + y1,4 + y2,4 + y3,4 + y5,4 + y6,4 + ArtP_1st - ArtN_1st = 1
1st: y0,5 + y1,5 + y2,5 + y3,5 + y4,5 + y6,5 + ArtP_1st - ArtN_1st = 1
1st: y0,6 + y1,6 + y2,6 + y3,6 + y4,6 + y5,6 + ArtP_1st - ArtN_1st = 1
1st: y0,7 + y1,7 + y2,7 + y3,7 + y4,7 + y5,7 + y6,7 + ArtP_1st - ArtN_1st
= 1
2nd: y1,0 + y1,2 + y1,3 + y1,4 + y1,5 + y1,6 + ArtP_2nd - ArtN_2nd = 1
2nd: y2,0 + y2,1 + y2,3 + y2,4 + y2,5 + y2,6 + ArtP_2nd - ArtN_2nd = 1
2nd: y3,0 + y3,1 + y3,2 + y3,4 + y3,5 + y3,6 + ArtP_2nd - ArtN_2nd = 1
2nd: y4,0 + y4,1 + y4,2 + y4,3 + y4,5 + y4,6 + ArtP_2nd - ArtN_2nd = 1
2nd: y5,0 + y5,1 + y5,2 + y5,3 + y5,4 + y5,6 + ArtP_2nd - ArtN_2nd = 1
2nd: y6,0 + y6,1 + y6,2 + y6,3 + y6,4 + y6,5 + ArtP_2nd - ArtN_2nd = 1
2nd: y7,0 + y7,1 + y7,2 + y7,3 + y7,4 + y7,5 + y7,6 + ArtP_2nd - ArtN_2nd
= 1
3rd: y0,1 + y0,2 + y0,3 + y0,4 + y0,5 + y0,6 + y0,7 - ArtN_3rd <= 6
4a: w1 + ArtP_4a >= 61
4b: w1 - ArtN_4b <= 1000
5th: w1 + 939 y0,1 - ArtN_5th <= 1000
4a: w2 + ArtP_4a >= 29
4b: w2 - ArtN_4b <= 1000
5th: w2 + 971 y0,2 - ArtN_5th <= 1000
4a: w3 + ArtP_4a >= 21
4b: w3 - ArtN_4b <= 1000
5th: w3 + 979 y0,3 - ArtN_5th <= 1000
4a: w4 + ArtP_4a >= 10
4b: w4 - ArtN_4b <= 1000
5th: w4 + 990 y0,4 - ArtN_5th <= 1000
4a: w5 + ArtP_4a >= 88
4b: w5 - ArtN_4b <= 1000
5th: w5 + 912 y0,5 - ArtN_5th <= 1000
4a: w6 + ArtP_4a >= 55
4b: w6 - ArtN_4b <= 1000
5th: w6 + 945 y0,6 - ArtN_5th <= 1000
4a: w7 + ArtP_4a >= 24
4b: w7 - ArtN_4b <= 1000
5th: w7 + 976 y0,7 - ArtN_5th <= 1000
7th_a: x1 + ArtP_7th_a >= 0.5204808141105262
7th_b: x1 - ArtN_7th_b <= 1.020480814110526
7th_a: x2 + ArtP_7th_a >= 0.2515502935385143
7th_b: x2 - ArtN_7th_b <= 0.7515502935385143
7th_a: x3 + ArtP_7th_a >= 0.3666892340942789
7th_b: x3 - ArtN_7th_b <= 0.8666892340942789
7th_a: x4 + ArtP_7th_a >= 0.4722844260546203
7th_b: x4 - ArtN_7th_b <= 0.9722844260546203
7th_a: x5 + ArtP_7th_a >= 0.6631001412076966
7th_b: x5 - ArtN_7th_b <= 1.163100141207697
7th_a: x6 + ArtP_7th_a >= 0.9611594267231531
7th_b: x6 - ArtN_7th_b <= 1.461159426723153
7th_a: x7 + ArtP_7th_a >= 0.7819085328559561
7th_b: x7 - ArtN_7th_b <= 1.281908532855956
8th: x1 - 58.47951918588947 y0,1 + ArtP_8th >= 0.5204808141105262
8th: x2 - 79.74844970646149 y0,2 + ArtP_8th >= 0.2515502935385143
8th: x3 - 87.63331076590572 y0,3 + ArtP_8th >= 0.3666892340942789
8th: x4 - 74.52771557394539 y0,4 + ArtP_8th >= 0.4722844260546203
8th: x5 - 85.33689985879231 y0,5 + ArtP_8th >= 0.6631001412076966
8th: x6 - 74.03884057327684 y0,6 + ArtP_8th >= 0.9611594267231531
8th: x7 - 86.21809146714405 y0,7 + ArtP_8th >= 0.7819085328559561
9th: x1 + 58.02048081411053 y1,0 - ArtN_9th <= 1.020480814110526
9th: x2 + 78.75155029353851 y2,0 - ArtN_9th <= 0.7515502935385143
9th: x3 + 86.86668923409428 y3,0 - ArtN_9th <= 0.8666892340942789
9th: x4 + 73.97228442605461 y4,0 - ArtN_9th <= 0.9722844260546203
9th: x5 + 85.16310014120769 y5,0 - ArtN_9th <= 1.163100141207697
9th: x6 + 74.46115942672316 y6,0 - ArtN_9th <= 1.461159426723153
9th: x7 + 86.28190853285595 y7,0 - ArtN_9th <= 1.281908532855956
11th: x1 + 58.02048081411053 y1,0 + ArtP_11th >= 1.020480814110526
11th: x2 + 78.75155029353851 y2,0 + ArtP_11th >= 0.7515502935385143
11th: x3 + 86.86668923409428 y3,0 + ArtP_11th >= 0.8666892340942789
11th: x4 + 73.97228442605461 y4,0 + ArtP_11th >= 0.9722844260546203
11th: x5 + 85.16310014120769 y5,0 + ArtP_11th >= 1.163100141207697
11th: x6 + 74.46115942672316 y6,0 + ArtP_11th >= 1.461159426723153
11th: x7 + 86.28190853285595 y7,0 + ArtP_11th >= 1.281908532855956
12th: w1 + ArtP_12th >= 0
12th: w2 + ArtP_12th >= 0
12th: w3 + ArtP_12th >= 0
12th: w4 + ArtP_12th >= 0
12th: w5 + ArtP_12th >= 0
13th: x1 + ArtP_13th >= 0
13th: x2 + ArtP_13th >= 0
13th: x3 + ArtP_13th >= 0
13th: x4 + ArtP_13th >= 0
13th: x5 + ArtP_13th >= 0
13th: x6 + ArtP_13th >= 0
13th: x7 + ArtP_13th >= 0
10th: - 11.02048081411053 y1,1 + ArtP_10th >= -1.020480814110526
6th: - w1 + w2 - 1000 y1,2 - 910 y2,1 + ArtP_6th >= -971
10th: - x1 + x2 - 107.0204808141105 y1,2 + ArtP_10th
>= -1.020480814110526
6th: - w1 + w3 - 1000 y1,3 - 918 y3,1 + ArtP_6th >= -979
10th: - x1 + x3 - 145.0204808141105 y1,3 + ArtP_10th
>= -1.020480814110526
6th: - w1 + w4 - 1000 y1,4 - 929 y4,1 + ArtP_6th >= -990
10th: - x1 + x4 - 76.02048081411053 y1,4 + ArtP_10th
>= -1.020480814110526
6th: - w1 + w5 - 1000 y1,5 - 851 y5,1 + ArtP_6th >= -912
10th: - x1 + x5 - 93.02048081411053 y1,5 + ArtP_10th
>= -1.020480814110526
6th: - w1 + w6 - 1000 y1,6 - 884 y6,1 + ArtP_6th >= -945
10th: - x1 + x6 - 123.0204808141105 y1,6 + ArtP_10th
>= -1.020480814110526
6th: - w1 + w7 - 1000 y1,7 - 915 y7,1 + ArtP_6th >= -976
10th: - x1 + x7 - 77.02048081411053 y1,7 + ArtP_10th
>= -1.020480814110526
6th: w1 - w2 - 910 y1,2 - 1000 y2,1 + ArtP_6th >= -939
10th: x1 - x2 - 106.7515502935385 y2,1 + ArtP_10th >= -0.7515502935385143
10th: - 10.75155029353851 y2,2 + ArtP_10th >= -0.7515502935385143
6th: - w2 + w3 - 1000 y2,3 - 950 y3,2 + ArtP_6th >= -979
10th: - x2 + x3 - 80.75155029353851 y2,3 + ArtP_10th
>= -0.7515502935385143
6th: - w2 + w4 - 1000 y2,4 - 961 y4,2 + ArtP_6th >= -990
10th: - x2 + x4 - 62.75155029353851 y2,4 + ArtP_10th
>= -0.7515502935385143
6th: - w2 + w5 - 1000 y2,5 - 883 y5,2 + ArtP_6th >= -912
10th: - x2 + x5 - 34.75155029353851 y2,5 + ArtP_10th
>= -0.7515502935385143
6th: - w2 + w6 - 1000 y2,6 - 916 y6,2 + ArtP_6th >= -945
10th: - x2 + x6 - 143.7515502935385 y2,6 + ArtP_10th
>= -0.7515502935385143
6th: - w2 + w7 - 1000 y2,7 - 947 y7,2 + ArtP_6th >= -976
10th: - x2 + x7 - 146.7515502935385 y2,7 + ArtP_10th
>= -0.7515502935385143
6th: w1 - w3 - 918 y1,3 - 1000 y3,1 + ArtP_6th >= -939
10th: x1 - x3 - 144.8666892340943 y3,1 + ArtP_10th >= -0.8666892340942789
6th: w2 - w3 - 950 y2,3 - 1000 y3,2 + ArtP_6th >= -971
10th: x2 - x3 - 80.86668923409428 y3,2 + ArtP_10th >= -0.8666892340942789
10th: - 10.86668923409428 y3,3 + ArtP_10th >= -0.8666892340942789
6th: - w3 + w4 - 1000 y3,4 - 969 y4,3 + ArtP_6th >= -990
10th: - x3 + x4 - 110.8666892340943 y3,4 + ArtP_10th
>= -0.8666892340942789
6th: - w3 + w5 - 1000 y3,5 - 891 y5,3 + ArtP_6th >= -912
10th: - x3 + x5 - 86.86668923409428 y3,5 + ArtP_10th
>= -0.8666892340942789
6th: - w3 + w6 - 1000 y3,6 - 924 y6,3 + ArtP_6th >= -945
10th: - x3 + x6 - 139.8666892340943 y3,6 + ArtP_10th
>= -0.8666892340942789
6th: - w3 + w7 - 1000 y3,7 - 955 y7,3 + ArtP_6th >= -976
10th: - x3 + x7 - 178.8666892340943 y3,7 + ArtP_10th
>= -0.8666892340942789
6th: w1 - w4 - 929 y1,4 - 1000 y4,1 + ArtP_6th >= -939
10th: x1 - x4 - 75.97228442605461 y4,1 + ArtP_10th >= -0.9722844260546203
6th: w2 - w4 - 961 y2,4 - 1000 y4,2 + ArtP_6th >= -971
10th: x2 - x4 - 62.97228442605462 y4,2 + ArtP_10th >= -0.9722844260546203
6th: w3 - w4 - 969 y3,4 - 1000 y4,3 + ArtP_6th >= -979
10th: x3 - x4 - 110.9722844260546 y4,3 + ArtP_10th >= -0.9722844260546203
10th: - 10.97228442605462 y4,4 + ArtP_10th >= -0.9722844260546203
6th: - w4 + w5 - 1000 y4,5 - 902 y5,4 + ArtP_6th >= -912
10th: - x4 + x5 - 49.97228442605462 y4,5 + ArtP_10th
>= -0.9722844260546203
6th: - w4 + w6 - 1000 y4,6 - 935 y6,4 + ArtP_6th >= -945
10th: - x4 + x6 - 134.9722844260546 y4,6 + ArtP_10th
>= -0.9722844260546203
6th: - w4 + w7 - 1000 y4,7 - 966 y7,4 + ArtP_6th >= -976
10th: - x4 + x7 - 117.9722844260546 y4,7 + ArtP_10th
>= -0.9722844260546203
6th: w1 - w5 - 851 y1,5 - 1000 y5,1 + ArtP_6th >= -939
10th: x1 - x5 - 93.16310014120769 y5,1 + ArtP_10th >= -1.163100141207697
6th: w2 - w5 - 883 y2,5 - 1000 y5,2 + ArtP_6th >= -971
10th: x2 - x5 - 35.16310014120769 y5,2 + ArtP_10th >= -1.163100141207697
6th: w3 - w5 - 891 y3,5 - 1000 y5,3 + ArtP_6th >= -979
10th: x3 - x5 - 87.16310014120769 y5,3 + ArtP_10th >= -1.163100141207697
6th: w4 - w5 - 902 y4,5 - 1000 y5,4 + ArtP_6th >= -990
10th: x4 - x5 - 50.1631001412077 y5,4 + ArtP_10th >= -1.163100141207697
10th: - 11.1631001412077 y5,5 + ArtP_10th >= -1.163100141207697
6th: - w5 + w6 - 1000 y5,6 - 857 y6,5 + ArtP_6th >= -945
10th: - x5 + x6 - 146.1631001412077 y5,6 + ArtP_10th
>= -1.163100141207697
6th: - w5 + w7 - 1000 y5,7 - 888 y7,5 + ArtP_6th >= -976
10th: - x5 + x7 - 134.1631001412077 y5,7 + ArtP_10th
>= -1.163100141207697
6th: w1 - w6 - 884 y1,6 - 1000 y6,1 + ArtP_6th >= -939
10th: x1 - x6 - 123.4611594267232 y6,1 + ArtP_10th >= -1.461159426723153
6th: w2 - w6 - 916 y2,6 - 1000 y6,2 + ArtP_6th >= -971
10th: x2 - x6 - 144.4611594267232 y6,2 + ArtP_10th >= -1.461159426723153
6th: w3 - w6 - 924 y3,6 - 1000 y6,3 + ArtP_6th >= -979
10th: x3 - x6 - 140.4611594267232 y6,3 + ArtP_10th >= -1.461159426723153
6th: w4 - w6 - 935 y4,6 - 1000 y6,4 + ArtP_6th >= -990
10th: x4 - x6 - 135.4611594267232 y6,4 + ArtP_10th >= -1.461159426723153
6th: w5 - w6 - 857 y5,6 - 1000 y6,5 + ArtP_6th >= -912
10th: x5 - x6 - 146.4611594267232 y6,5 + ArtP_10th >= -1.461159426723153
10th: - 11.46115942672315 y6,6 + ArtP_10th >= -1.461159426723153
6th: - w6 + w7 - 1000 y6,7 - 921 y7,6 + ArtP_6th >= -976
10th: - x6 + x7 - 129.4611594267232 y6,7 + ArtP_10th
>= -1.461159426723153
6th: w1 - w7 - 915 y1,7 - 1000 y7,1 + ArtP_6th >= -939
10th: x1 - x7 - 77.28190853285595 y7,1 + ArtP_10th >= -1.281908532855956
6th: w2 - w7 - 947 y2,7 - 1000 y7,2 + ArtP_6th >= -971
10th: x2 - x7 - 147.281908532856 y7,2 + ArtP_10th >= -1.281908532855956
6th: w3 - w7 - 955 y3,7 - 1000 y7,3 + ArtP_6th >= -979
10th: x3 - x7 - 179.281908532856 y7,3 + ArtP_10th >= -1.281908532855956
6th: w4 - w7 - 966 y4,7 - 1000 y7,4 + ArtP_6th >= -990
10th: x4 - x7 - 118.281908532856 y7,4 + ArtP_10th >= -1.281908532855956
6th: w5 - w7 - 888 y5,7 - 1000 y7,5 + ArtP_6th >= -912
10th: x5 - x7 - 134.2819085328559 y7,5 + ArtP_10th >= -1.281908532855956
6th: w6 - w7 - 921 y6,7 - 1000 y7,6 + ArtP_6th >= -945
10th: x6 - x7 - 129.2819085328559 y7,6 + ArtP_10th >= -1.281908532855956
10th: - 11.28190853285596 y7,7 + ArtP_10th >= -1.281908532855956
Bounds
w0 <= 6
w1 <= 6
w2 <= 6
w3 <= 6
w4 <= 6
w5 <= 6
w6 <= 6
w7 <= 6
Binaries
y0,0 y0,1 y0,2 y0,3 y0,4 y0,5 y0,6 y0,7 y1,0 y1,1 y1,2 y1,3 y1,4 y1,5 y1,6
y1,7 y2,0 y2,1 y2,2 y2,3 y2,4 y2,5 y2,6 y2,7 y3,0 y3,1 y3,2 y3,3 y3,4 y3,5
y3,6 y3,7 y4,0 y4,1 y4,2 y4,3 y4,4 y4,5 y4,6 y4,7 y5,0 y5,1 y5,2 y5,3 y5,4
y5,5 y5,6 y5,7 y6,0 y6,1 y6,2 y6,3 y6,4 y6,5 y6,6 y6,7 y7,0 y7,1 y7,2 y7,3
y7,4 y7,5 y7,6 y7,7
Generals
w0 w1 w2 w3 w4 w5 w6 w7
End