-
Notifications
You must be signed in to change notification settings - Fork 5
/
ionex_samples.py
324 lines (296 loc) · 17 KB
/
ionex_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#!/usr/bin/python3
import pandas as pd
import numpy as np
import re,time,os
from datetime import datetime,timedelta
import gdal
latlon=(10,20)
class ionexreader:
def __init__(self,rootFolder='./'):
self.lonValues=[0,0,0] #min, max, delta
self.latValues=[0,0,0] #min, max, delta
self.heighValues=[0,0,0] #min, max, delta
self.root=rootFolder
self.scale=1
def getYear(self,d): return d.astype(object).year #d is np.datetime64
def getMonth(self,d): return d.astype(object).month #d is np.datetime64
def getDay(self,d): return d.astype(object).day #d is np.datetime64
def getDOY(self,d): return ((d-d.astype('datetime64[Y]'))/np.timedelta64(1,'D')+1).astype(np.int64)
def constantToMap(c,inputShape):
return np.full(inputShape, c)
def chunks(self,l, n): #split a line in chunks of size n
return [l[i:i+n].strip() for i in range(0, len(l), n)]
def read2DIonex(self,fileName):
matrixList=[]
data=None
currMatrix=None
currentEpoch=None
m=n=z=0
with open(fileName) as f:
header=[]
headerEnded=False
daterange=None
for line in f:
if not headerEnded:
if not "END OF HEADER" in line:
header.append(line)
if "HGT1 / HGT2 / DHGT" in line:
#Ex: 450.0 450.0 0.0 HGT1 / HGT2 / DHGT
values=re.split(' +', line.strip())
self.heighValues=[float(v) for v in values[0:3]]
if self.heighValues[2]==0:
z=1
else:
z=int(float(self.heighValues[1]-self.heighValues[0])/self.heighValues[2])
elif "LAT1 / LAT2 / DLAT" in line:
#Ex: 87.5 -87.5 -2.5 LAT1 / LAT2 / DLAT
values=re.split(' +', line.strip())
self.latValues=[float(v) for v in values[0:3]]
n=int(float(self.latValues[1]-self.latValues[0])/self.latValues[2])+1
elif "LON1 / LON2 / DLON" in line:
#Ex: -180.0 180.0 5.0 LON1 / LON2 / DLON
values=re.split(' +', line.strip())
self.lonValues=[float(v) for v in values[0:3]]
m=int(float(self.lonValues[1]-self.lonValues[0])/self.lonValues[2])+1 #first colunm repeats
elif "EXPONENT" in line:
values=re.split(' +', line.strip())
self.scale=10**float(values[0])
elif "EPOCH OF FIRST MAP" in line:
values = re.split(' +', line)
epoch=' '.join(values[1:7])
self.date_first=datetime.strptime(epoch, "%Y %m %d %H %M %S")
elif "EPOCH OF LAST MAP" in line:
values = re.split(' +', line)
epoch=' '.join(values[1:7])
self.date_last=datetime.strptime(epoch, "%Y %m %d %H %M %S")
elif "INTERVAL" in line:
values = re.split(' +', line)
self.interval=timedelta(seconds=int(values[1]))
else:
headerEnded=True
daterange=pd.date_range(self.date_first, self.date_last, freq=self.interval)
else:
if "START OF TEC MAP" in line: #new epoch
currMatrix=np.zeros((n,m))
elif "END OF TEC MAP" in line: #SAVE THE OLDER MATRIX
matrixList.append(currMatrix)
currMatrix=None
elif "EPOCH OF CURRENT MAP" in line:
# 2021 4 25 8 0 0 EPOCH OF CURRENT MAP
values = re.split(' +', line)
epoch=' '.join(values[1:7])
currentEpoch=datetime.strptime(epoch, "%Y %m %d %H %M %S")
elif "LAT/LON1/LON2/DLON/H" in line:
lat=float(line[2:8])
lon1=float(line[8:14])
lon2=float(line[14:20])
dlon=float(line[20:26])
h=line[26:32]
row=int((lat-self.latValues[0])/self.latValues[2]) #find the row
#Not sure if I really need this info
col0=0#(lon1-self.lonValues[0])/self.lonValues[2]
#col1=(lon2-self.lonValues[0])/self.lonValues[2]
else: #finally some data
if not currMatrix is None:
values=self.chunks(line.replace('\n',''),5)
#print(values)
values=[float(x) for x in values]
values=np.array(values)
nvals=len(values)
currMatrix[row,col0:col0+nvals]=values*self.scale
col0+=nvals
#print(values)
outputArray=np.array(matrixList)
transform=[self.lonValues[0],self.lonValues[2],0,self.latValues[0],0,self.latValues[2] ]
return outputArray, transform, daterange
def concatenateYear(self,year,outputFile,useSpaceWeather=True, prefix='codg', hour_step=2):
matrixList=None
if useSpaceWeather:
from spaceweather.indicesdownloader import indicesDownloader
spaceweatherfolder=os.path.join(os.getcwd(),'spaceweather')
downloader=indicesDownloader()
weatherdf=downloader.getInterpolatedIndexes(year,spaceweatherfolder, hour_step=hour_step)
leap= 0 if (year)%4 else 1
for d in range(1,366+leap):
f=os.path.join(self.root,f"{prefix}{d:003d}0.{year%100}i.npy")
day=datetime.strptime(f'{year} {d}', '%Y %j')
ionex=np.load(f)[:-1] #last hour is repeated
ionex=np.expand_dims(ionex,-1) #adding channel dimension
if useSpaceWeather:
mapShape=ionex[0].shape
#yeah, numpy is amazing. Transforming pandas to stacked images in 4 lines
dailyIndices=weatherdf[(weatherdf.index>=day) & (weatherdf.index<day+timedelta(1))]
baseMatrix=dailyIndices[['Ap','F107obs']].to_numpy() #
m=np.full((*mapShape[:-1],*baseMatrix.shape), baseMatrix)
m=np.moveaxis(m,2,0) #done
ionex=np.concatenate([ionex,m],-1) #built the 2 extra maps.
if matrixList is None:
matrixList=ionex
else:
matrixList=np.concatenate((matrixList,ionex))
#print(len(ionex)) #used this to check if everyone had 24 hours
with open(outputFile, 'wb') as f:
np.save(f,matrixList)
def concatenateFromIONEX(self,dateBegin, dateEnd,outputFile,useSpaceWeather=False,prefix='codg'):
mapsPerFile=0 #initializing. Later on we will replace this for the first map and force every map after that to have the same number.
matrixList=None
if useSpaceWeather:
from spaceweather.indicesdownloader import indicesDownloader
spaceweatherfolder=os.path.join(os.getcwd(),'spaceweather')
downloader=indicesDownloader()
weatherdf=downloader.getInterpolatedIndexes(year,spaceweatherfolder)
daterange=np.arange(np.datetime64(dateBegin), np.datetime64(dateEnd)+ np.timedelta64(1, 'D'))
for date in daterange:
print(f"Processing {prefix} day {date}")
doy=self.getDOY(date)
year=self.getYear(date)
f=os.path.join(self.root,f"{prefix}{doy:003d}0.{year%100}i")
if os.path.exists(f+'.npy'):
ionex=np.load(f+'.npy')
else:
ionex, transform, timerange=self.read2DIonex(f)
np.save(f+'.npy',ionex)
#TODO: check if the ionex was read successfully
#[:24] #last hour is repeated
if mapsPerFile==0: mapsPerFile=ionex.shape[0]-1
sampling=int(ionex.shape[0]/mapsPerFile)
ionex=np.expand_dims(ionex[:mapsPerFile*sampling:sampling],-1) #adding channel dimension
if useSpaceWeather:
day=datetime.strptime(f'{year} {d}', '%Y %j')
mapShape=ionex[0].shape
#yeah, numpy is amazing. Transforming pandas to stacked images in 4 lines
dailyIndices=weatherdf[(weatherdf.index>=day) & (weatherdf.index<day+timedelta(1))]
baseMatrix=dailyIndices[['Ap','F107obs']].to_numpy() #
m=np.full((*mapShape[:-1],*baseMatrix.shape), baseMatrix)
m=np.moveaxis(m,2,0) #done
ionex=np.concatenate([ionex,m],-1) #built the 2 extra maps.
if matrixList is None:
matrixList=ionex
else:
matrixList=np.concatenate((matrixList,ionex))
#print(len(ionex)) #used this to check if everyone had 24 hours
with open(outputFile, 'wb') as f:
np.save(f,matrixList)
def createNPYMatricesOnFolder(self):
for fileName in os.listdir(self.root):
if fileName.endswith("i"):
ionex=os.path.join(self.root,fileName)
if not os.path.exists(ionex+".npy"):
print(f"Processing {ionex}")
try:
arr,trans,daterange=self.read2DIonex(ionex)
with open(ionex+'.npy', 'wb') as f:
np.save(f,arr)
except:
print(f"Failed to process {ionex}")
def ionex2tiff(self,inputIONEXName,outputTiffName):
m,transform,daterange=self.read2DIonex(inputIONEXName)
driver = gdal.GetDriverByName("GTiff")
dst_ds = driver.Create(outputTiffName, xsize=m.shape[2], ysize=m.shape[1], bands=m.shape[0], eType=gdal.GDT_Float32)
dst_ds.SetGeoTransform(transform)
#87.5 -87.5 -2.5
#-180.0 180.0 5.0
for i in range(m.shape[0]):
dst_ds.GetRasterBand(i+1).WriteArray(m[i])
# Once we're done, close properly the dataset
dst_ds = None
def write2DIonex(self,m,transformation, daterange, fileName):
m=m.squeeze()
with open(fileName, 'w') as outfile:
h=450
lastLon=(m.shape[2]-1)*transformation[1]+transformation[0]
lastLat=(m.shape[1]-1)*transformation[5]+transformation[3]
t0=daterange[0]
t1=daterange[-1]
dseconds=int((daterange[1]-daterange[0]).total_seconds())
header=f""" 1.0 IONOSPHERE MAPS GNSS IONEX VERSION / TYPE
pyspatialgeodesy IME 05-JAN-18 20:20 PGM / RUN BY / DATE
Map Name COMMENT
Predicted global ionosphere maps (GIM). DESCRIPTION
{t0.year:4} {t0.month:2} {t0.day:2} {t0.hour:2} {t0.minute:2} {t0.second:2} EPOCH OF FIRST MAP
{t1.year:4} {t1.month:2} {t1.day:2} {t1.hour:2} {t1.minute:2} {t1.second:2} EPOCH OF LAST MAP
{dseconds:4d} INTERVAL
{m.shape[0]: 4d} # OF MAPS IN FILE
NONE MAPPING FUNCTION
10.0 ELEVATION CUTOFF
One-way carrier phase leveled to code OBSERVABLES USED
279 # OF STATIONS
56 # OF SATELLITES
6371.0 BASE RADIUS
2 MAP DIMENSION
{h: 6.1f}{h: 6.1f} 0.0 HGT1 / HGT2 / DHGT
{transformation[3]: 6.1f}{lastLat: 6.1f}{transformation[5]: 6.1f} LAT1 / LAT2 / DLAT
{transformation[0]: 6.1f}{lastLon: 6.1f}{transformation[1]: 6.1f} LON1 / LON2 / DLON
{int(np.log10(self.scale)): 4d} EXPONENT \n"""#{0: 6d}
outfile.write(header)
for i in range(m.shape[0]):
t=daterange[i]
outfile.write(f"""{i+1: 6d} START OF TEC MAP
{t.year:4} {t.month:2} {t.day:2} {t.hour:2} {t.minute:2} {t.second:2} EPOCH OF CURRENT MAP\n""")
for j in range(m.shape[1]):
#line=np.array_str(m[j]).replace('[',' ').replace(']','')
lat=transformation[3]+transformation[5]*j
beginLine=f""" {lat: 6.1f}{transformation[0]: 6.1f}{lastLon: 6.1f}{transformation[1]: 6.1f}{h: 6.1f} LAT/LON1/LON2/DLON/H\n"""
outfile.write(beginLine)
line=np.array2string((m[i,j]/self.scale).astype(int),max_line_width=82, formatter={'int': '{:5d}'.format} ,separator='', precision= 5).replace('\n ','\n')[1:-1]+'\n'
outfile.write(line)
outfile.write(f"""{i+1: 6d} END OF TEC MAP \n""")
outfile.write(""" END OF FILE """)
if __name__=="__main__":
reader=ionexreader("./ionex/")
reader.createNPYMatricesOnFolder()
for year in range(2013,2020+1):
if not os.path.exists(f"codg{year}.npy"):
reader.concatenateFromIONEX(f'{year}-01-01',f'{year}-12-31', f'codg{year}.npy', useSpaceWeather=False, prefix='codg')
#complete series.
if not os.path.exists('codg_12_20.npy'):
codg_12_20=[]
for year in range(2013,2020+1):
m=np.load(f"codg{year}.npy")
if m.shape[0]/365>12:
m=m[::2]
codg_12_20.append(m)
codg_12_20=np.concatenate(codg_12_20, axis=0)
np.save('codg_12_20.npy',codg_12_20)
print(codg_12_20.shape)
for year in range(2015,2020+1):
if not os.path.exists(f"codg{year}_12h.npy"):
m=np.load(f"codg{year}.npy")
if m.shape[0]/365>12:
m=m[::2]
np.save(f"codg{year}_12h.npy",m)
#for year in range(2019,2021):
#fname=f"timeseries{year%100}.npy"
#print(f"Test data saved in {fname}")
#if not os.path.exists(fname):
#reader.concatenateYear(year,"timeseries.npy",useSpaceWeather=False)
#reader.concatenateYear(year,fname,useSpaceWeather=True)
year=2019 #Training data
print("Training data saved in timeseries19.npy")
if not os.path.exists("timeseries19_ind.npy"):
reader.concatenateYear(year,"timeseries19.npy",useSpaceWeather=False)
reader.concatenateYear(year,"timeseries19_ind.npy",useSpaceWeather=True)
year=2020 #Test data
print("Test data saved in timeseries.npy")
if not os.path.exists("timeseries_ind.npy"):
reader.concatenateYear(year,"timeseries.npy",useSpaceWeather=False)
reader.concatenateYear(year,"timeseries_ind.npy",useSpaceWeather=True)
#if not os.path.exists("timeseries14_ind.npy"):
#reader.concatenateYear(2014,"timeseries14_ind.npy",useSpaceWeather=True, hour_step=2)
if not os.path.exists("timeseries15_ind.npy"):
reader.concatenateYear(2015,"timeseries15_ind.npy",useSpaceWeather=True, hour_step=2)
if not os.path.exists("c1pg.npy"):
reader.concatenateYear(2019,"c1pg.npy",useSpaceWeather=False,prefix='c1pg')
if not os.path.exists("c1pg2015.npy"):
reader.concatenateYear(2015,"c1pg2015.npy",useSpaceWeather=False,prefix='c1pg')
if not os.path.exists("c1pg20.npy"):
reader.concatenateYear(2020,"c1pg20.npy",useSpaceWeather=False,prefix='c1pg')
if not os.path.exists("corg.npy"):
reader.concatenateYear(2019,"corg.npy",useSpaceWeather=False,prefix='corg')
if not os.path.exists("magn19.npy"):
reader.concatenateYear(2019,"magn19.npy",useSpaceWeather=False,prefix='magn')
#print("Tiff conversion test")
#reader.ionex2tiff("./ionex/codg0010.18i","./output/teste.tif")
#reader=ionexreader()
m,trans,daterange=reader.read2DIonex("./ionex/codg0010.18i")
reader.write2DIonex(m,trans,daterange,"./output/teste.18i")