Skip to content

Latest commit

 

History

History
86 lines (60 loc) · 5.01 KB

README.md

File metadata and controls

86 lines (60 loc) · 5.01 KB
tf-gen-models logo

Ready to use implementations of state-of-the-art generative models in TensorFlow 2

PyPI - Python versions PyPI - Version PyPI - Status PyPI - Downloads GitHub - Forks GitHub - Stars DOI

Installation

Dependencies

tf-gen-models requires:

  • Python (>= 3.7, < 3.10)
  • TensorFlow (>= 2.5)
  • Matplotlib (>= 3.4)
  • Pillow (>= 8.0)

The tf-gen-models package is built upon TensorFlow 2. See the TensorFlow install guide for the pip package while, to enable GPU support, the use Docker container is recommended. Alternatively, GPU-enabled TensorFlow can be easily installed using the tensorflow-gpu package on conda-forge.

User installation

If you already have a working installation of TensorFlow 2 (preferably with the GPU support enabled), the easiest way to install tf-gen-models is using pip:

pip install tf-gen-models

Available generative models

Generative models Implementation Notebooks Trends
GAN ✔️ 🛠️
VAE
Norm Flow
Diffusion

Generative Adversarial Networks

Algorithms Implementation Conditioning* Notebooks Paper
GAN ✔️ 🛠️ ✔️ arXiv:1406.2661
BceGAN ✔️ ✔️
WGAN ✔️ ✔️ arXiv:1701.07875
WGAN_GP ✔️ ✔️ arXiv:1704.00028
CramerGAN ✔️ ✔️ arXiv:1705.10743
WGAN_ALP ✔️ 🛠️ arXiv:1907.05681

*Referring to the conditional version of GANs proposed in arXiv:1411.1784.

Variational Autoencoders

Planned for release v0.1.0

Normalizing Flows

Planned for release v0.2.0

Diffusion Models

Planned for release v0.2.0

Jupyter notebooks

License

MIT License