Skip to content

Latest commit

 

History

History
154 lines (153 loc) · 121 KB

List_system_article.md

File metadata and controls

154 lines (153 loc) · 121 KB
System Article
Abi2 Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiA Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiB Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiC Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiD Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiE Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiG Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiH Prévots, F., Daloyau, M., Bonin, O., Dumont, X., Tolou, S., 1996. Cloning and sequencing of the novel abortive infection gene abiH of Lactococcus lactis ssp. lactis biovar. diacetylactis S94. FEMS Microbiol Lett 142, 295–299. https://doi.org/10.1111/j.1574-6968.1996.tb08446.x
AbiI Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiJ Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiK Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiL Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiN Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiO Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiP2 Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiQ Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiR Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiT Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiU Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006
AbiV Haaber, J., Moineau, S., Fortier, L.-C., Hammer, K., 2008. AbiV, a Novel Antiphage Abortive Infection Mechanism on the Chromosome of Lactococcus lactis subsp. cremoris MG1363. Appl Environ Microbiol 74, 6528–6537. https://doi.org/10.1128/AEM.00780-08
AbiZ Durmaz, E., Klaenhammer, T.R., 2007. Abortive Phage Resistance Mechanism AbiZ Speeds the Lysis Clock To Cause Premature Lysis of Phage-Infected Lactococcus lactis. J Bacteriol 189, 1417–1425. https://doi.org/10.1128/JB.00904-06
Aditi Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
Avs Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Azaca Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
Borvo Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
BREX Goldfarb, T., Sberro, H., Weinstock, E., Cohen, O., Doron, S., Charpak-Amikam, Y., Afik, S., Ofir, G., Sorek, R., 2015. BREX is a novel phage resistance system widespread in microbial genomes. The EMBO Journal 34, 169–183. https://doi.org/10.15252/embj.201489455
BstA Owen, S.V., Wenner, N., Dulberger, C.L., Rodwell, E.V., Bowers-Barnard, A., Quinones-Olvera, N., Rigden, D.J., Rubin, E.J., Garner, E.C., Baym, M., Hinton, J.C.D., 2020. Prophage-encoded phage defence proteins with cognate self-immunity. bioRxiv 2020.07.13.199331. https://doi.org/10.1101/2020.07.13.199331
Bunzi Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
Butters_gp30_gp31 Mageeney, C.M., Mohammed, H.T., Dies, M., Anbari, S., Cudkevich, N., Chen, Y., Buceta, J., Ware, V.C., 2020. Mycobacterium Phage Butters-Encoded Proteins Contribute to Host Defense against Viral Attack. mSystems 5, e00534-20. https://doi.org/10.1128/mSystems.00534-20
Butters_gp57r Mohammed, H.T., Mageeney, C., Ware, V.C., 2023. Identification of a new antiphage system in Mycobacterium phage Butters. https://doi.org/10.1101/2023.01.03.522681
CapRel Zhang, T. et al. Direct activation of an innate immune system in bacteria by a viral capsid protein. bioRxiv 2022.05.30.493996 (2022) doi:10.1101/2022.05.30.493996.
CARD_NLR Wein, T., Johnson, A.G., Millman, A., Lange, K., Yirmiya, E., Hadary, R., Garb, J., Steinruecke, F., Hill, A.B., Kranzusch, P.J., Sorek, R., 2023. CARD-like domains mediate anti-phage defense in bacterial gasdermin systems. bioRxiv 2023.05.28.542683. https://doi.org/10.1101/2023.05.28.542683
Cas Bernheim, A., Bikard, D., Touchon, M., Rocha, E.P.C., 2020. Atypical organizations and epistatic interactions of CRISPRs and cas clusters in genomes and their mobile genetic elements. Nucleic Acids Res 48, 748–760. https://doi.org/10.1093/nar/gkz1091
CBASS Millman, A., Melamed, S., Amitai, G., Sorek, R., 2020. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nature Microbiology 5, 1608–1615. https://doi.org/10.1038/s41564-020-0777-y
Charlie_gp32 Dedrick, R.M., Jacobs-Sera, D., Bustamante, C.A.G., Garlena, R.A., Mavrich, T.N., Pope, W.H., Reyes, J.C.C., Russell, D.A., Adair, T., Alvey, R., Bonilla, J.A., Bricker, J.S., Brown, B.R., Byrnes, D., Cresawn, S.G., Davis, W.B., Dickson, L.A., Edgington, N.P., Findley, A.M., Golebiewska, U., Grose, J.H., Hayes, C.F., Hughes, L.E., Hutchison, K.W., Isern, S., Johnson, A.A., Kenna, M.A., Klyczek, K.K., Mageeney, C.M., Michael, S.F., Molloy, S.D., Montgomery, M.T., Neitzel, J., Page, S.T., Pizzorno, M.C., Poxleitner, M.K., Rinehart, C.A., Robinson, C.J., Rubin, M.R., Teyim, J.N., Vazquez, E., Ware, V.C., Washington, J., Hatfull, G.F., 2017. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol 2, 16251. https://doi.org/10.1038/nmicrobiol.2016.251
DarTG LeRoux, M., Srikant, S., Littlehale, M.H., Teodoro, G., Doron, S., Badiee, M., Leung, A.K.L., Sorek, R., Laub, M.T., 2021. The DarTG toxin-antitoxin system provides phage defense by ADP-ribosylating viral DNA. bioRxiv 2021.09.27.462013. https://doi.org/10.1101/2021.09.27.462013
Dazbog Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
dCTPdeaminase Tal, N., Millman, A., Stokar-Avihail, A., Fedorenko, T., Leavitt, A., Melamed, S., Yirmiya, E., Avraham, C., Amitai, G., Sorek, R., 2021. Antiviral defense via nucleotide depletion in bacteria. bioRxiv 2021.04.26.441389. https://doi.org/10.1101/2021.04.26.441389
Detocs Rousset, F., Yirmiya, E., Nesher, S., Brandis, A., Mehlman, T., Itkin, M., Malitsky, S., Millman, A., Melamed, S., Sorek, R., 2023. A conserved family of immune effectors cleaves cellular ATP upon viral infection. https://doi.org/10.1101/2023.01.24.525353
dGTPase Tal, N., Millman, A., Stokar-Avihail, A., Fedorenko, T., Leavitt, A., Melamed, S., Yirmiya, E., Avraham, C., Amitai, G., Sorek, R., 2021. Antiviral defense via nucleotide depletion in bacteria. bioRxiv 2021.04.26.441389. https://doi.org/10.1101/2021.04.26.441389
DISARM Ofir, G., Melamed, S., Sberro, H., Mukamel, Z., Silverman, S., Yaakov, G., Doron, S., Sorek, R., 2018. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol 3, 90–98. https://doi.org/10.1038/s41564-017-0051-0
DdmDE Jaskólska, M., Adams, D.W., Blokesch, M., 2022. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 604, 323–329. https://doi.org/10.1038/s41586-022-04546-y
Dnd Wang, L., Chen, S., Xu, T., Taghizadeh, K., Wishnok, J.S., Zhou, X., You, D., Deng, Z., Dedon, P.C., 2007. Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol 3, 709–710. https://doi.org/10.1038/nchembio.2007.39
Dodola Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
Dpd Thiaville, J. J. et al. Novel genomic island modifies
DNA with 7-deazaguanine derivatives. Proc. Natl
Acad. Sci. USA 113, E1452–E1459 (2016).
DRT Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Druantia Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Dsr Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Eleos Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
FS_GIY_YIG Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014
FS_HEPN_TM Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014
FS_HP Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014
FS_HP_SDH_sah Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014
FS_HsdR_like Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014
FS_Sma Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014
Gabija Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Gao_Ape Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Her Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Hhe Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Iet Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Mza Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Ppl Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Qat Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_RL Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_TerY Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Tmn Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Gao_Upx Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
GAPS1 Mahata, T., Kanarek, K., Goren, M.G., Bosis, E., Qimron, U., Salomon, D., 2023. A widespread bacterial mobile genetic element encodes weapons against phages, bacteria, and eukaryotes. https://doi.org/10.1101/2023.03.28.534373
GAPS2 Mahata, T., Kanarek, K., Goren, M.G., Bosis, E., Qimron, U., Salomon, D., 2023. A widespread bacterial mobile genetic element encodes weapons against phages, bacteria, and eukaryotes. https://doi.org/10.1101/2023.03.28.534373
GAPS4 Mahata, T., Kanarek, K., Goren, M.G., Bosis, E., Qimron, U., Salomon, D., 2023. A widespread bacterial mobile genetic element encodes weapons against phages, bacteria, and eukaryotes. https://doi.org/10.1101/2023.03.28.534373
GAPS6 Mahata, T., Kanarek, K., Goren, M.G., Bosis, E., Qimron, U., Salomon, D., 2023. A widespread bacterial mobile genetic element encodes weapons against phages, bacteria, and eukaryotes. https://doi.org/10.1101/2023.03.28.534373
GasderMIN Johnson, A.G., Wein, T., Mayer, M.L., Duncan-Lowey, B., Yirmiya, E., Oppenheimer-Shaanan, Y., Amitai, G., Sorek, R., Kranzusch, P.J., 2021. Bacterial gasdermins reveal an ancient mechanism of cell death. bioRxiv 2021.06.07.447441. https://doi.org/10.1101/2021.06.07.447441
Hachiman Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Hna Sather, L.M., Zamani, M., Muhammed, Z., Kearsley, J.V.S., Fisher, G.T., Jones, K.M., Finan, T.M., 2023. A broadly distributed predicted helicase/nuclease confers phage resistance via abortive infection. Cell Host & Microbe 31, 343-355.e5. https://doi.org/10.1016/j.chom.2023.01.010
ISG15-like Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
JukAB Li, Y., Guan, J., Hareendranath, S., Crawford, E., Agard, D.A., Makarova, K.S., Koonin, E.V., Bondy-Denomy, J., 2022. A family of novel immune systems targets early infection of nucleus-forming jumbo phages. https://doi.org/10.1101/2022.09.17.508391
Kiwa Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Lamassu-Fam Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
Lit Uzan, M., Miller, E.S., 2010. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virology Journal 7, 360. https://doi.org/10.1186/1743-422X-7-360
MADS Maestri, A., Pursey, E., Chong, C., Pons, B.J., Gandon, S., Custodio, R., Chisnall, M., Grasso, A., Paterson, S., Baker, K., Houte, S. van, Chevallereau, A., Westra, E.R., 2023. Bacterial defences interact synergistically by disrupting phage cooperation. https://doi.org/10.1101/2023.03.30.534895
Menshen Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
MMB_gp29_gp30 Dedrick, R.M., Jacobs-Sera, D., Bustamante, C.A.G., Garlena, R.A., Mavrich, T.N., Pope, W.H., Reyes, J.C.C., Russell, D.A., Adair, T., Alvey, R., Bonilla, J.A., Bricker, J.S., Brown, B.R., Byrnes, D., Cresawn, S.G., Davis, W.B., Dickson, L.A., Edgington, N.P., Findley, A.M., Golebiewska, U., Grose, J.H., Hayes, C.F., Hughes, L.E., Hutchison, K.W., Isern, S., Johnson, A.A., Kenna, M.A., Klyczek, K.K., Mageeney, C.M., Michael, S.F., Molloy, S.D., Montgomery, M.T., Neitzel, J., Page, S.T., Pizzorno, M.C., Poxleitner, M.K., Rinehart, C.A., Robinson, C.J., Rubin, M.R., Teyim, J.N., Vazquez, E., Ware, V.C., Washington, J., Hatfull, G.F., 2017. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol 2, 16251. https://doi.org/10.1038/nmicrobiol.2016.251
Mok_Hok_Sok Pecota D. C., Wood T. K. (1996). Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J. Bacteriol. 178 2044–2050. 10.1128/jb.178.7.2044-2050.1996
Mokosh Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
MqsRAC Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491696
Nhi Bari, S.M.N., Chou-Zheng, L., Cater, K., Dandu, V.S., Thomas, A., Aslan, B., Hatoum-Aslan, A., 2019. A unique mode of nucleic acid immunity performed by a single multifunctional enzyme. bioRxiv 776245. https://doi.org/10.1101/776245
NixI LeGault, K.N., Barth, Z.K., DePaola, P., Seed, K.D., 2021. A phage parasite deploys a nicking nuclease effector to inhibit replication of its viral host. bioRxiv 2021.07.12.452122. https://doi.org/10.1101/2021.07.12.452122
NLR Kibby, E. M. et al. Bacterial NLR-related proteins protect against phage. bioRxiv 2022.07.19.500537 (2022) doi:10.1101/2022.07.19.500537
Old_exonuclease Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Olokun Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
pAgo Makarova KS, Wolf YI, van der Oost J, Koonin EV. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct. 2009 Aug 25;4:29. doi: 10.1186/1745-6150-4-29. PMID: 19706170; PMCID: PMC2743648.
Panchino_gp28 Dedrick, R.M., Jacobs-Sera, D., Bustamante, C.A.G., Garlena, R.A., Mavrich, T.N., Pope, W.H., Reyes, J.C.C., Russell, D.A., Adair, T., Alvey, R., Bonilla, J.A., Bricker, J.S., Brown, B.R., Byrnes, D., Cresawn, S.G., Davis, W.B., Dickson, L.A., Edgington, N.P., Findley, A.M., Golebiewska, U., Grose, J.H., Hayes, C.F., Hughes, L.E., Hutchison, K.W., Isern, S., Johnson, A.A., Kenna, M.A., Klyczek, K.K., Mageeney, C.M., Michael, S.F., Molloy, S.D., Montgomery, M.T., Neitzel, J., Page, S.T., Pizzorno, M.C., Poxleitner, M.K., Rinehart, C.A., Robinson, C.J., Rubin, M.R., Teyim, J.N., Vazquez, E., Ware, V.C., Washington, J., Hatfull, G.F., 2017. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol 2, 16251. https://doi.org/10.1038/nmicrobiol.2016.251
PD-Lambda-1 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491706
PD-Lambda-2 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491707
PD-Lambda-3 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491708
PD-Lambda-4 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491709
PD-Lambda-5 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491710
PD-Lambda-6 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491711
PD-T4-1 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491691
PD-T4-10 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491692
PD-T4-2 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491693
PD-T4-3 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491694
PD-T4-4 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491695
PD-T4-5 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491696
PD-T4-6 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491697
PD-T4-7 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491698
PD-T4-8 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491699
PD-T4-9 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491700
PD-T7-1 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491701
PD-T7-2 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491702
PD-T7-3 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491703
PD-T7-4 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491704
PD-T7-5 Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491705
PfiAT Li Y, Liu X, Tang K, Wang W, Guo Y, Wang X. Prophage encoding toxin/antitoxin system PfiT/PfiA inhibits Pf4 production in Pseudomonas aeruginosa. Microb Biotechnol. 2020 Jul;13(4):1132-1144. doi: 10.1111/1751-7915.13570. Epub 2020 Apr 4. PMID: 32246813; PMCID: PMC7264888.
Phrann_gp29_gp30 Dedrick RM, Jacobs-Sera D, Bustamante CA, Garlena RA, Mavrich TN, Pope WH, Reyes JC, Russell DA, Adair T, Alvey R, Bonilla JA, Bricker JS, Brown BR, Byrnes D, Cresawn SG, Davis WB, Dickson LA, Edgington NP, Findley AM, Golebiewska U, Grose JH, Hayes CF, Hughes LE, Hutchison KW, Isern S, Johnson AA, Kenna MA, Klyczek KK, Mageeney CM, Michael SF, Molloy SD, Montgomery MT, Neitzel J, Page ST, Pizzorno MC, Poxleitner MK, Rinehart CA, Robinson CJ, Rubin MR, Teyim JN, Vazquez E, Ware VC, Washington J, Hatfull GF. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol. 2017 Jan 9;2:16251. doi: 10.1038/nmicrobiol.2016.251
Pif Cram, D., Ray, A., Skurray, R., 1984. Molecular analysis of F plasmid pif region specifying abortive infection of T7 phage. Mol Gen Genet 197, 137–142. https://doi.org/10.1007/BF00327934
PrrC Uzan, M., Miller, E.S., 2010. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virology Journal 7, 360. https://doi.org/10.1186/1743-422X-7-360
PsyrTA Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
Pycsar Tal, N. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184, 5728–5739 (2021).
RADAR Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372
Retron Mestre, M.R., González-Delgado, A., Gutiérrez-Rus, L.I., Martínez-Abarca, F., Toro, N., 2020. Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems. Nucleic Acids Res 48, 12632–12647. https://doi.org/10.1093/nar/gkaa1149 Millman, A., Bernheim, A., Stokar-Avihail, A., Fedorenko, T., Voichek, M., Leavitt, A., Oppenheimer-Shaanan, Y., Sorek, R., 2020. Bacterial Retrons Function In Anti-Phage Defense. Cell 183, 1551-1561.e12. https://doi.org/10.1016/j.cell.2020.09.065
RexAB Parma, D.H., Snyder, M., Sobolevski, S., Nawroz, M., Brody, E., Gold, L., 1992. The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev 6, 497–510. https://doi.org/10.1101/gad.6.3.497
RloC Davidov E, Kaufmann G. RloC: a wobble nucleotide-excising and zinc-responsive bacterial tRNase. Mol Microbiol. 2008 Sep;69(6):1560-74. doi: 10.1111/j.1365-2958.2008.06387.x. Epub 2008 Aug 4. PMID: 18681940; PMCID: PMC2610378.
RM Oliveira, P.H., Touchon, M., Rocha, E.P.C., 2014. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Research 42, 10618. https://doi.org/10.1093/nar/gku734
RnlAB Koga, M., Otsuka, Y., Lemire, S. & Yonesaki, T. Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system. Genetics 187, 123–130 (2011)
RosmerTA Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
Rst_2TM_1TM_TIR Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_3HP Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_DUF4238 Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_gop_beta_cll Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_HelicaseDUF2290 Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_Hydrolase-3Tm Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_PARIS Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_RT-nitrilase-Tm Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
Rst_TIR-NLR Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644
SanaTA Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, Sorek R. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol Cell. 2013 Apr 11;50(1):136-48. doi: 10.1016/j.molcel.2013.02.002. Epub 2013 Mar 7. PMID: 23478446; PMCID: PMC3644417.
SEFIR Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
Septu Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Shango Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
Shedu Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
ShosTA Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
SoFIC Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
SpbK Johnson CM, Harden MM, Grossman AD. Interactions between mobile genetic elements: An anti-phage gene in an integrative and conjugative element protects host cells from predation by a temperate bacteriophage. PLoS Genet. 2022 Feb 14;18(2):e1010065. doi: 10.1371/journal.pgen.1010065. PMID: 35157704; PMCID: PMC8880864
SspBCDE Wang, S., Wan, M., Huang, R., Zhang, Y., Xie, Y., Wei, Y., Ahmad, M., Wu, D., Hong, Y., Deng, Z., Chen, S., Li, Z., Wang, L., n.d. SspABCD-SspFGH Constitutes a New Type of DNA Phosphorothioate-Based Bacterial Defense System. mBio 12, e00613-21. https://doi.org/10.1128/mBio.00613-21
Stk2 Depardieu, F., Didier, J.-P., Bernheim, A., Sherlock, A., Molina, H., Duclos, B., Bikard, D., 2016. A Eukaryotic-like Serine/Threonine Kinase Protects Staphylococci against Phages. Cell Host & Microbe 20, 471–481. https://doi.org/10.1016/j.chom.2016.08.010
Thoeris Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Tiamat Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
Uzume Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
Viperin Bernheim, A., Millman, A., Ofir, G., Meitav, G., Avraham, C., Shomar, H., Rosenberg, M.M., Tal, N., Melamed, S., Amitai, G., Sorek, R., 2021. Prokaryotic viperins produce diverse antiviral molecules. Nature 589, 120–124. https://doi.org/10.1038/s41586-020-2762-2
Wadjet Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120
Zorya Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120