System | Article |
---|---|
Abi2 | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiA | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiB | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiC | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiD | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiE | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiG | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiH | Prévots, F., Daloyau, M., Bonin, O., Dumont, X., Tolou, S., 1996. Cloning and sequencing of the novel abortive infection gene abiH of Lactococcus lactis ssp. lactis biovar. diacetylactis S94. FEMS Microbiol Lett 142, 295–299. https://doi.org/10.1111/j.1574-6968.1996.tb08446.x |
AbiI | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiJ | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiK | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiL | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiN | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiO | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiP2 | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiQ | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiR | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiT | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiU | Chopin, M.-C., Chopin, A., Bidnenko, E., 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8, 473–479. https://doi.org/10.1016/j.mib.2005.06.006 |
AbiV | Haaber, J., Moineau, S., Fortier, L.-C., Hammer, K., 2008. AbiV, a Novel Antiphage Abortive Infection Mechanism on the Chromosome of Lactococcus lactis subsp. cremoris MG1363. Appl Environ Microbiol 74, 6528–6537. https://doi.org/10.1128/AEM.00780-08 |
AbiZ | Durmaz, E., Klaenhammer, T.R., 2007. Abortive Phage Resistance Mechanism AbiZ Speeds the Lysis Clock To Cause Premature Lysis of Phage-Infected Lactococcus lactis. J Bacteriol 189, 1417–1425. https://doi.org/10.1128/JB.00904-06 |
Aditi | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
Avs | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Azaca | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
Borvo | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
BREX | Goldfarb, T., Sberro, H., Weinstock, E., Cohen, O., Doron, S., Charpak-Amikam, Y., Afik, S., Ofir, G., Sorek, R., 2015. BREX is a novel phage resistance system widespread in microbial genomes. The EMBO Journal 34, 169–183. https://doi.org/10.15252/embj.201489455 |
BstA | Owen, S.V., Wenner, N., Dulberger, C.L., Rodwell, E.V., Bowers-Barnard, A., Quinones-Olvera, N., Rigden, D.J., Rubin, E.J., Garner, E.C., Baym, M., Hinton, J.C.D., 2020. Prophage-encoded phage defence proteins with cognate self-immunity. bioRxiv 2020.07.13.199331. https://doi.org/10.1101/2020.07.13.199331 |
Bunzi | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
Butters_gp30_gp31 | Mageeney, C.M., Mohammed, H.T., Dies, M., Anbari, S., Cudkevich, N., Chen, Y., Buceta, J., Ware, V.C., 2020. Mycobacterium Phage Butters-Encoded Proteins Contribute to Host Defense against Viral Attack. mSystems 5, e00534-20. https://doi.org/10.1128/mSystems.00534-20 |
Butters_gp57r | Mohammed, H.T., Mageeney, C., Ware, V.C., 2023. Identification of a new antiphage system in Mycobacterium phage Butters. https://doi.org/10.1101/2023.01.03.522681 |
CapRel | Zhang, T. et al. Direct activation of an innate immune system in bacteria by a viral capsid protein. bioRxiv 2022.05.30.493996 (2022) doi:10.1101/2022.05.30.493996. |
CARD_NLR | Wein, T., Johnson, A.G., Millman, A., Lange, K., Yirmiya, E., Hadary, R., Garb, J., Steinruecke, F., Hill, A.B., Kranzusch, P.J., Sorek, R., 2023. CARD-like domains mediate anti-phage defense in bacterial gasdermin systems. bioRxiv 2023.05.28.542683. https://doi.org/10.1101/2023.05.28.542683 |
Cas | Bernheim, A., Bikard, D., Touchon, M., Rocha, E.P.C., 2020. Atypical organizations and epistatic interactions of CRISPRs and cas clusters in genomes and their mobile genetic elements. Nucleic Acids Res 48, 748–760. https://doi.org/10.1093/nar/gkz1091 |
CBASS | Millman, A., Melamed, S., Amitai, G., Sorek, R., 2020. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nature Microbiology 5, 1608–1615. https://doi.org/10.1038/s41564-020-0777-y |
Charlie_gp32 | Dedrick, R.M., Jacobs-Sera, D., Bustamante, C.A.G., Garlena, R.A., Mavrich, T.N., Pope, W.H., Reyes, J.C.C., Russell, D.A., Adair, T., Alvey, R., Bonilla, J.A., Bricker, J.S., Brown, B.R., Byrnes, D., Cresawn, S.G., Davis, W.B., Dickson, L.A., Edgington, N.P., Findley, A.M., Golebiewska, U., Grose, J.H., Hayes, C.F., Hughes, L.E., Hutchison, K.W., Isern, S., Johnson, A.A., Kenna, M.A., Klyczek, K.K., Mageeney, C.M., Michael, S.F., Molloy, S.D., Montgomery, M.T., Neitzel, J., Page, S.T., Pizzorno, M.C., Poxleitner, M.K., Rinehart, C.A., Robinson, C.J., Rubin, M.R., Teyim, J.N., Vazquez, E., Ware, V.C., Washington, J., Hatfull, G.F., 2017. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol 2, 16251. https://doi.org/10.1038/nmicrobiol.2016.251 |
DarTG | LeRoux, M., Srikant, S., Littlehale, M.H., Teodoro, G., Doron, S., Badiee, M., Leung, A.K.L., Sorek, R., Laub, M.T., 2021. The DarTG toxin-antitoxin system provides phage defense by ADP-ribosylating viral DNA. bioRxiv 2021.09.27.462013. https://doi.org/10.1101/2021.09.27.462013 |
Dazbog | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
dCTPdeaminase | Tal, N., Millman, A., Stokar-Avihail, A., Fedorenko, T., Leavitt, A., Melamed, S., Yirmiya, E., Avraham, C., Amitai, G., Sorek, R., 2021. Antiviral defense via nucleotide depletion in bacteria. bioRxiv 2021.04.26.441389. https://doi.org/10.1101/2021.04.26.441389 |
Detocs | Rousset, F., Yirmiya, E., Nesher, S., Brandis, A., Mehlman, T., Itkin, M., Malitsky, S., Millman, A., Melamed, S., Sorek, R., 2023. A conserved family of immune effectors cleaves cellular ATP upon viral infection. https://doi.org/10.1101/2023.01.24.525353 |
dGTPase | Tal, N., Millman, A., Stokar-Avihail, A., Fedorenko, T., Leavitt, A., Melamed, S., Yirmiya, E., Avraham, C., Amitai, G., Sorek, R., 2021. Antiviral defense via nucleotide depletion in bacteria. bioRxiv 2021.04.26.441389. https://doi.org/10.1101/2021.04.26.441389 |
DISARM | Ofir, G., Melamed, S., Sberro, H., Mukamel, Z., Silverman, S., Yaakov, G., Doron, S., Sorek, R., 2018. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol 3, 90–98. https://doi.org/10.1038/s41564-017-0051-0 |
DdmDE | Jaskólska, M., Adams, D.W., Blokesch, M., 2022. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 604, 323–329. https://doi.org/10.1038/s41586-022-04546-y |
Dnd | Wang, L., Chen, S., Xu, T., Taghizadeh, K., Wishnok, J.S., Zhou, X., You, D., Deng, Z., Dedon, P.C., 2007. Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol 3, 709–710. https://doi.org/10.1038/nchembio.2007.39 |
Dodola | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
Dpd | Thiaville, J. J. et al. Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proc. Natl Acad. Sci. USA 113, E1452–E1459 (2016). |
DRT | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Druantia | Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120 |
Dsr | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Eleos | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
FS_GIY_YIG | Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014 |
FS_HEPN_TM | Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014 |
FS_HP | Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014 |
FS_HP_SDH_sah | Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014 |
FS_HsdR_like | Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014 |
FS_Sma | Fillol-Salom, A., Rostøl, J.T., Ojiogu, A.D., Chen, J., Douce, G., Humphrey, S., Penadés, J.R., 2022. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248-3262.e20. https://doi.org/10.1016/j.cell.2022.07.014 |
Gabija | Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120 |
Gao_Ape | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Gao_Her | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Gao_Hhe | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Gao_Iet | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Gao_Mza | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Gao_Ppl | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Gao_Qat | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Gao_RL | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Gao_TerY | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Gao_Tmn | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Gao_Upx | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
GAPS1 | Mahata, T., Kanarek, K., Goren, M.G., Bosis, E., Qimron, U., Salomon, D., 2023. A widespread bacterial mobile genetic element encodes weapons against phages, bacteria, and eukaryotes. https://doi.org/10.1101/2023.03.28.534373 |
GAPS2 | Mahata, T., Kanarek, K., Goren, M.G., Bosis, E., Qimron, U., Salomon, D., 2023. A widespread bacterial mobile genetic element encodes weapons against phages, bacteria, and eukaryotes. https://doi.org/10.1101/2023.03.28.534373 |
GAPS4 | Mahata, T., Kanarek, K., Goren, M.G., Bosis, E., Qimron, U., Salomon, D., 2023. A widespread bacterial mobile genetic element encodes weapons against phages, bacteria, and eukaryotes. https://doi.org/10.1101/2023.03.28.534373 |
GAPS6 | Mahata, T., Kanarek, K., Goren, M.G., Bosis, E., Qimron, U., Salomon, D., 2023. A widespread bacterial mobile genetic element encodes weapons against phages, bacteria, and eukaryotes. https://doi.org/10.1101/2023.03.28.534373 |
GasderMIN | Johnson, A.G., Wein, T., Mayer, M.L., Duncan-Lowey, B., Yirmiya, E., Oppenheimer-Shaanan, Y., Amitai, G., Sorek, R., Kranzusch, P.J., 2021. Bacterial gasdermins reveal an ancient mechanism of cell death. bioRxiv 2021.06.07.447441. https://doi.org/10.1101/2021.06.07.447441 |
Hachiman | Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120 |
Hna | Sather, L.M., Zamani, M., Muhammed, Z., Kearsley, J.V.S., Fisher, G.T., Jones, K.M., Finan, T.M., 2023. A broadly distributed predicted helicase/nuclease confers phage resistance via abortive infection. Cell Host & Microbe 31, 343-355.e5. https://doi.org/10.1016/j.chom.2023.01.010 |
ISG15-like | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
JukAB | Li, Y., Guan, J., Hareendranath, S., Crawford, E., Agard, D.A., Makarova, K.S., Koonin, E.V., Bondy-Denomy, J., 2022. A family of novel immune systems targets early infection of nucleus-forming jumbo phages. https://doi.org/10.1101/2022.09.17.508391 |
Kiwa | Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120 |
Lamassu-Fam | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
Lit | Uzan, M., Miller, E.S., 2010. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virology Journal 7, 360. https://doi.org/10.1186/1743-422X-7-360 |
MADS | Maestri, A., Pursey, E., Chong, C., Pons, B.J., Gandon, S., Custodio, R., Chisnall, M., Grasso, A., Paterson, S., Baker, K., Houte, S. van, Chevallereau, A., Westra, E.R., 2023. Bacterial defences interact synergistically by disrupting phage cooperation. https://doi.org/10.1101/2023.03.30.534895 |
Menshen | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
MMB_gp29_gp30 | Dedrick, R.M., Jacobs-Sera, D., Bustamante, C.A.G., Garlena, R.A., Mavrich, T.N., Pope, W.H., Reyes, J.C.C., Russell, D.A., Adair, T., Alvey, R., Bonilla, J.A., Bricker, J.S., Brown, B.R., Byrnes, D., Cresawn, S.G., Davis, W.B., Dickson, L.A., Edgington, N.P., Findley, A.M., Golebiewska, U., Grose, J.H., Hayes, C.F., Hughes, L.E., Hutchison, K.W., Isern, S., Johnson, A.A., Kenna, M.A., Klyczek, K.K., Mageeney, C.M., Michael, S.F., Molloy, S.D., Montgomery, M.T., Neitzel, J., Page, S.T., Pizzorno, M.C., Poxleitner, M.K., Rinehart, C.A., Robinson, C.J., Rubin, M.R., Teyim, J.N., Vazquez, E., Ware, V.C., Washington, J., Hatfull, G.F., 2017. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol 2, 16251. https://doi.org/10.1038/nmicrobiol.2016.251 |
Mok_Hok_Sok | Pecota D. C., Wood T. K. (1996). Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J. Bacteriol. 178 2044–2050. 10.1128/jb.178.7.2044-2050.1996 |
Mokosh | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
MqsRAC | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491696 |
Nhi | Bari, S.M.N., Chou-Zheng, L., Cater, K., Dandu, V.S., Thomas, A., Aslan, B., Hatoum-Aslan, A., 2019. A unique mode of nucleic acid immunity performed by a single multifunctional enzyme. bioRxiv 776245. https://doi.org/10.1101/776245 |
NixI | LeGault, K.N., Barth, Z.K., DePaola, P., Seed, K.D., 2021. A phage parasite deploys a nicking nuclease effector to inhibit replication of its viral host. bioRxiv 2021.07.12.452122. https://doi.org/10.1101/2021.07.12.452122 |
NLR | Kibby, E. M. et al. Bacterial NLR-related proteins protect against phage. bioRxiv 2022.07.19.500537 (2022) doi:10.1101/2022.07.19.500537 |
Old_exonuclease | Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644 |
Olokun | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
pAgo | Makarova KS, Wolf YI, van der Oost J, Koonin EV. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct. 2009 Aug 25;4:29. doi: 10.1186/1745-6150-4-29. PMID: 19706170; PMCID: PMC2743648. |
Panchino_gp28 | Dedrick, R.M., Jacobs-Sera, D., Bustamante, C.A.G., Garlena, R.A., Mavrich, T.N., Pope, W.H., Reyes, J.C.C., Russell, D.A., Adair, T., Alvey, R., Bonilla, J.A., Bricker, J.S., Brown, B.R., Byrnes, D., Cresawn, S.G., Davis, W.B., Dickson, L.A., Edgington, N.P., Findley, A.M., Golebiewska, U., Grose, J.H., Hayes, C.F., Hughes, L.E., Hutchison, K.W., Isern, S., Johnson, A.A., Kenna, M.A., Klyczek, K.K., Mageeney, C.M., Michael, S.F., Molloy, S.D., Montgomery, M.T., Neitzel, J., Page, S.T., Pizzorno, M.C., Poxleitner, M.K., Rinehart, C.A., Robinson, C.J., Rubin, M.R., Teyim, J.N., Vazquez, E., Ware, V.C., Washington, J., Hatfull, G.F., 2017. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol 2, 16251. https://doi.org/10.1038/nmicrobiol.2016.251 |
PD-Lambda-1 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491706 |
PD-Lambda-2 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491707 |
PD-Lambda-3 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491708 |
PD-Lambda-4 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491709 |
PD-Lambda-5 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491710 |
PD-Lambda-6 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491711 |
PD-T4-1 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491691 |
PD-T4-10 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491692 |
PD-T4-2 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491693 |
PD-T4-3 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491694 |
PD-T4-4 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491695 |
PD-T4-5 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491696 |
PD-T4-6 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491697 |
PD-T4-7 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491698 |
PD-T4-8 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491699 |
PD-T4-9 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491700 |
PD-T7-1 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491701 |
PD-T7-2 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491702 |
PD-T7-3 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491703 |
PD-T7-4 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491704 |
PD-T7-5 | Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., Laub, M.T., 2022. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. https://doi.org/10.1101/2022.05.12.491705 |
PfiAT | Li Y, Liu X, Tang K, Wang W, Guo Y, Wang X. Prophage encoding toxin/antitoxin system PfiT/PfiA inhibits Pf4 production in Pseudomonas aeruginosa. Microb Biotechnol. 2020 Jul;13(4):1132-1144. doi: 10.1111/1751-7915.13570. Epub 2020 Apr 4. PMID: 32246813; PMCID: PMC7264888. |
Phrann_gp29_gp30 | Dedrick RM, Jacobs-Sera D, Bustamante CA, Garlena RA, Mavrich TN, Pope WH, Reyes JC, Russell DA, Adair T, Alvey R, Bonilla JA, Bricker JS, Brown BR, Byrnes D, Cresawn SG, Davis WB, Dickson LA, Edgington NP, Findley AM, Golebiewska U, Grose JH, Hayes CF, Hughes LE, Hutchison KW, Isern S, Johnson AA, Kenna MA, Klyczek KK, Mageeney CM, Michael SF, Molloy SD, Montgomery MT, Neitzel J, Page ST, Pizzorno MC, Poxleitner MK, Rinehart CA, Robinson CJ, Rubin MR, Teyim JN, Vazquez E, Ware VC, Washington J, Hatfull GF. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol. 2017 Jan 9;2:16251. doi: 10.1038/nmicrobiol.2016.251 |
Pif | Cram, D., Ray, A., Skurray, R., 1984. Molecular analysis of F plasmid pif region specifying abortive infection of T7 phage. Mol Gen Genet 197, 137–142. https://doi.org/10.1007/BF00327934 |
PrrC | Uzan, M., Miller, E.S., 2010. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virology Journal 7, 360. https://doi.org/10.1186/1743-422X-7-360 |
PsyrTA | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
Pycsar | Tal, N. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184, 5728–5739 (2021). |
RADAR | Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S., Segel, M., Schmid-Burgk, J.L., Koob, J., Wolf, Y.I., Koonin, E.V., Zhang, F., 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084. https://doi.org/10.1126/science.aba0372 |
Retron | Mestre, M.R., González-Delgado, A., Gutiérrez-Rus, L.I., Martínez-Abarca, F., Toro, N., 2020. Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems. Nucleic Acids Res 48, 12632–12647. https://doi.org/10.1093/nar/gkaa1149 Millman, A., Bernheim, A., Stokar-Avihail, A., Fedorenko, T., Voichek, M., Leavitt, A., Oppenheimer-Shaanan, Y., Sorek, R., 2020. Bacterial Retrons Function In Anti-Phage Defense. Cell 183, 1551-1561.e12. https://doi.org/10.1016/j.cell.2020.09.065 |
RexAB | Parma, D.H., Snyder, M., Sobolevski, S., Nawroz, M., Brody, E., Gold, L., 1992. The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev 6, 497–510. https://doi.org/10.1101/gad.6.3.497 |
RloC | Davidov E, Kaufmann G. RloC: a wobble nucleotide-excising and zinc-responsive bacterial tRNase. Mol Microbiol. 2008 Sep;69(6):1560-74. doi: 10.1111/j.1365-2958.2008.06387.x. Epub 2008 Aug 4. PMID: 18681940; PMCID: PMC2610378. |
RM | Oliveira, P.H., Touchon, M., Rocha, E.P.C., 2014. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Research 42, 10618. https://doi.org/10.1093/nar/gku734 |
RnlAB | Koga, M., Otsuka, Y., Lemire, S. & Yonesaki, T. Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system. Genetics 187, 123–130 (2011) |
RosmerTA | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
Rst_2TM_1TM_TIR | Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644 |
Rst_3HP | Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644 |
Rst_DUF4238 | Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644 |
Rst_gop_beta_cll | Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644 |
Rst_HelicaseDUF2290 | Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644 |
Rst_Hydrolase-3Tm | Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644 |
Rst_PARIS | Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644 |
Rst_RT-nitrilase-Tm | Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644 |
Rst_TIR-NLR | Rousset, F., Dowding, J., Bernheim, A., Rocha, E.P.C., Bikard, D., 2021. Prophage-encoded hotspots of bacterial immune systems. bioRxiv 2021.01.21.427644. https://doi.org/10.1101/2021.01.21.427644 |
SanaTA | Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, Sorek R. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol Cell. 2013 Apr 11;50(1):136-48. doi: 10.1016/j.molcel.2013.02.002. Epub 2013 Mar 7. PMID: 23478446; PMCID: PMC3644417. |
SEFIR | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
Septu | Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120 |
Shango | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
Shedu | Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120 |
ShosTA | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
SoFIC | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
SpbK | Johnson CM, Harden MM, Grossman AD. Interactions between mobile genetic elements: An anti-phage gene in an integrative and conjugative element protects host cells from predation by a temperate bacteriophage. PLoS Genet. 2022 Feb 14;18(2):e1010065. doi: 10.1371/journal.pgen.1010065. PMID: 35157704; PMCID: PMC8880864 |
SspBCDE | Wang, S., Wan, M., Huang, R., Zhang, Y., Xie, Y., Wei, Y., Ahmad, M., Wu, D., Hong, Y., Deng, Z., Chen, S., Li, Z., Wang, L., n.d. SspABCD-SspFGH Constitutes a New Type of DNA Phosphorothioate-Based Bacterial Defense System. mBio 12, e00613-21. https://doi.org/10.1128/mBio.00613-21 |
Stk2 | Depardieu, F., Didier, J.-P., Bernheim, A., Sherlock, A., Molina, H., Duclos, B., Bikard, D., 2016. A Eukaryotic-like Serine/Threonine Kinase Protects Staphylococci against Phages. Cell Host & Microbe 20, 471–481. https://doi.org/10.1016/j.chom.2016.08.010 |
Thoeris | Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120 |
Tiamat | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
Uzume | Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447 |
Viperin | Bernheim, A., Millman, A., Ofir, G., Meitav, G., Avraham, C., Shomar, H., Rosenberg, M.M., Tal, N., Melamed, S., Amitai, G., Sorek, R., 2021. Prokaryotic viperins produce diverse antiviral molecules. Nature 589, 120–124. https://doi.org/10.1038/s41586-020-2762-2 |
Wadjet | Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120 |
Zorya | Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., Sorek, R., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. https://doi.org/10.1126/science.aar4120 |