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Abstract

The development of Machine Learning models has evolved into a vital activity for the
smooth operation and the perpetual growth of modern organizations. Nonetheless, one
of the most prevalent challenges that enterprises confront during ML operations is the
inability to productize their implemented solutions. That phenomenon primarily origi-
nates in the technical interdependencies between Data Scientists and Software Engineers.
While the first should be responsible only for designing and developing models, often,
they need the assistance of the second to deploy, scale and serve their ML code. As a con-
sequence for the organizations, technical debt is generated, leading to time, resource, and
eventually monetary costs. To overcome this problem, MLOps, a relatively new concept
based on the DevOps method, is utilized by automating the lifecycle of ML systems.

This thesis, implemented in cooperation with the Mercedes-Benz AG, presents the
design and the development of a complete MLOps lifecycle, integrated into one of the
major company’s open-source projects, the Data and Analytics Platform (DnA). The so-
lution is based on existing Free and Open Source Software (FOSS) technologies and tools
such as Kubeflow, which were utilized and adjusted to meet the needs of modern organi-
zations. In parallel to the setup process of the MLOps pipeline, research was conducted
to gather evidence and data about the enterprise readiness of FOSS solutions. The im-
plemented MLOps workflow eliminates the technical debt and enables Data Scientists to
scale and deploy their ML models without requiring technical expertise. Furthermore, a
real-life use case scenario within Mercedes-Benz is used to validate the developed solu-
tion. Finally, the thesis applies criticism to the security-design nature of open-source soft-
ware and provides recommendations for the further improvement of the implemented
MLOps architecture.

Keywords— MLOps, FOSS, Security, Kubeflow
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1 Introduction

This chapter provides a short overview of the company background, a brief description

of the thesis task, and finally, a layout of the following chapters.

1.1 Background

This thesis was conducted in cooperation with Mercedes-Benz AG, a Mercedes-Benz

Group AG company.

Figure 1.1: The Mercedes-Benz AG logo

1.1.1 Company & Department

Mercedes-Benz Group AG (former Daimler AG), based in Stuttgart, Baden-Württemberg,

Germany, is an international group of companies and one of the worldwide leading orga-

nizations in the automotive spectrum. The corporation foundation was rooted in 1886 to

the invention of the first automobile from Carl Benz and Gottlieb Daimler. Both of them

discovered and manufactured the first motor vehicle in the world independently but al-

most synchronously (Daimler, 2020a). The official establishment of the organization was

dated back to 1926 when the two pioneers (Benz & Daimler) merged their companies to

cope with the economic crisis after World War I (Haghirian & Kayser, 2018). Today, the

Mercedes-Benz Group AG consists of two major organizations: Mercedes-Benz AG (Cars

& Vans) and Mercedes-Benz Mobility AG. In addition to being one of the world’s largest

1



2 1.1 Background

manufacturers of vehicles, the company offers financing, insurance, and other mobility

services globally while maintaining production units in almost every continent. Accord-

ing to Daimler (2020b), in 2020, the former group numbered around 288,500 employees

and sold about 3 million vehicles.

Mercedez-Benz AG uses Agile to enable teams to work efficiently and deliver quality

products and services to the customers. Undoubtedly most of the Agile frameworks

are predominantly customized for smaller team sizes (Alqudah & Razali, 2016). As a

result, larger firms often take advantage of several extended Agile forms to develop and

manage extensive projects and teams. The group companies of Mercedez-Benz utilize

the Scaled Agile Framework (SAFe) designed by Leffingwell et al. (2018). One of the

main characteristics of SAFe is the Agile Release Train (ART). An ART is fundamentally

a group of different teams working in cooperation on a shared company value stream

(Brenner & Wunder, 2015). Distinct ARTs comprised of people from separate Capabilities

(the SAFe term for departments) focus on end-to-end responsibility of various products

(Figure 1.2). The Data, Analytics & Functions Enabling ART is one of the core ARTs

inside Mercedes-Benz AG. It is responsible for more than five different products related

to solutions around business functions, data, and artificial intelligence/machine learning

models. The implementation of this thesis took place in the Data, Analytics & Functions

ART of Mercedes-Benz AG and, more precisely, it is part of the Data & Analytics platform

(hereafter referred to as the DnA platform) development.

1.1.2 DnA Platform

In recent years, more and more organizations worldwide are embracing the use of Free

and Open Source Software (FOSS). Mercedes-Benz Group AG acknowledges that FOSS

has become a key component in numerous company products and is committed to con-

tributing to the open-source community in various global projects (Daimler, 2020c). Fur-

thermore, most of the group companies are now developing open-source software prod-

ucts. Mercedes-Benz AG launched several FOSS projects to encapsulate the various open-

source benefits and give back to the international open-source community.

The DnA platform is one of the first FOSS Mercedes-Benz AG projects. On a com-



1.1 Background 3

Figure 1.2: SAFe: ARTs, Capabilities & Products

pany level, the main objective of this product is to enable all Data Scientists and non to

create Artificial Intelligence or Machine Learning (AI/ML) models in an effective, effi-

cient and compliant way. More specifically, the DnA platform is aiming to formulate a

toolkit. A toolkit that will allow anyone to create, manage and share AI/ML solutions

without spending additional time on unnecessary configuration steps. That also includes

GDPR compliant data access every time used internally. The DnA platform consists of

three main parts:

1. The Solution section where users can create, manage, share and access solution

descriptions.

2. The Reports section, where users can create and edit reports.

3. The Workspace section, where users can:

• Create experiment Workspaces, write code using the environment of the open-

source Jupyter Notebook, and then create provisions for their solutions.

• Make use of several services, such as malware scan, etc.
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Figure 1.3: DnA Platform: Homepage

1.2 Task Overview

The task of this thesis can be divided into two subtasks. The first subtask outlays the re-

search, design, and development of an MLOps solution in the environment of Mercedes-

Benz and the DnA platform. The second includes the leverage of existing Free and Open

Source Software for this purpose and the investigation around their applicability to se-

cure enterprise environments.

1.2.1 Problem

The era of big data has brought Machine Learning into a protagonistic position in every-

day life. A survey by Algorithmia (Columbus, 2021) found that more than 75% of enter-

prises gave in 2021 high priority to AI and ML over other IT actions. Nevertheless, the

evolution of ML systems is rapid, their establishment large, and their complexity deep.

That is the main reason why these systems are accused of being prone to technical debt

creation (Tang et al., 2021). The technical debt term was introduced back in 1992 and de-

scribes the long-term costs (financial and not) that the blistering evolution of a software

engineering framework creates (Sculley et al., 2015a). In the case of Machine Learning

systems, technical debt can be produced in both the implementation and maintenance
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stages. For instance, costs in ML solutions are often increased when Data Scientists re-

quire the involvement of Software Engineers to deploy their models. To tackle these chal-

lenges, organizations, and communities globally are now focusing on creating MLOps

solutions inspired by the widely used DevOps methods. While several licensed products

for MLOps are available, such as Dataiku, there is a need for open-source MLOps alter-

native solutions. Fortunately, FOSS projects such as Kubeflow or MLFlow exist to help

with ML lifecycle management. The possible effects of creating an open-source MLOps

lifecycle could dramatically reduce the technical debt. Nevertheless, FOSS is quite often

considered not being enterprise-ready.

1.2.2 Objective

The main goal of this thesis is to reduce the technical debt of ML by researching, de-

signing, and implementing an MLOps lifecycle for the Mercedes-Benz DnA platform,

using existing open-source tools and technologies. In parallel, of equal importance is

the exploration and investigation of how enterprise-ready can the open-source software

be. Finally, the ultimate objective is to enhance the Data Scientists’ user experience by

enabling them to work on the actual implementation of ML models and eliminate their

interaction with extra configuration settings by automating them in the background.

1.3 Thesis Outline

The Master Thesis’ structure is outlined in the following chapters:

• Chapter 2 defines the task of this thesis by providing a description of the problem

and the reasons that constitute its solution inevitable.

• Chapter 3 outlays the current state of the art around the problem. In particular,

this chapter includes a comprehensive bibliographic overview of the main concepts

and frameworks used in modern organizations. Finally, the chapter presents the

technologies and the tools used for the solution development.

• Chapter 4 illustrates the overall approach selected to tackle the problem and in-
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cludes a high-level representation of the generated MLOps lifecycle.

• Chapter 5 contains the implementation of the suggested solution in the enterprise

environment of Mercedes-Benz AG. More specifically, the chapter describes all the

challenges, the problems related to the setup of the tools, and their respective solu-

tions.

• Chapter 6 presents the verification of the implemented solution by providing and

evaluating the results from its application to a use case.

• Chapter 7 outlays the conclusions produced by this project, and based on them,

provides future suggestions and recommendations.



2 Task Description

According to Meulen and McCal (2018), a significant percentage of AI projects (around

85%) fail to escape from the research environment and reach the production pipeline.

That practically is translated to economic, and not only loss for organizations, as the

developed models often can not be used in the real-life environment.

2.1 Where does the problem occur?

Several reasons can lead to the non-success of Machine Learning projects. The laboratory

development of an ML model is only the first step before an organization can practi-

cally utilize the solution. Further steps include the packaging of the application, scaling-

out, tuning, instrumenting, and maybe automating the whole process (Figure 2.1). The

problem arising is that while writing code and creating models in a lab environment,

such as Jupyter Notebooks, is a configuration-wise simple process, everything else is not

(Haviv, 2020). Implementing an ML solution in a workspace may require only a cou-

ple of Data Scientists, if not one, and the required development time can be counted in

weeks. However, that is not the case with the subsequent steps. Data Scientists usually

dont have the necessary developer skills to productize their models. Consequently, they

often must work for months together with software engineers, not on the actual solution

but its configuration. That translates to costs in time, effort, resources, and respectively

in money. Finally and interestingly enough, the preceding fact supports one of Boehm

(1987)’s statements, already introduced in the 80s, about Software Metrics: "Software sys-

tems and software products each typically cost 3 times as much per instruction to fully develop as

does an individual software program. Software system products cost 9 times as much."

7
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Figure 2.1: ML models from Lab to Production (Haviv, 2020)

In the Mercedes-Benz AG context, that is one of the crucial problems the DnA plat-

form attempts to tackle. More specifically, before the development of the application, the

numerous departments of the company around the globe were using custom solutions to

develop ML systems. Initially, DnA was implemented to provide centralized and trans-

parent access to data and ML solutions to all the Mercedes-Benz employees. Then, several

licensed and open-source development tools and services were added, aiming to consti-

tute the platform as the default choice for all the Data Scientists within the organization.

Nevertheless, integrating all the different platform services into an automated lifecycle

was the ultimate goal. Since DnA is an open-source project contributed by Mercedes-

Benz to the community, the task of this thesis is to create an open-source solution to:

• Reduce the technical debt of ML systems,

• Create automated ML pipelines

• Enhance the Data Scientist experience

• Remove the silos between models and production

2.2 A research question

A critical part of this thesis is to provide a solution utilizing existing open-source tech-

nologies and tools. While the modern trends in the IT World (Driver & Klinect, 2019)

seem to place open-source software as a defacto standard in more than 95% of the IT

enterprises, a distinctly interesting research question can be extracted by this thesis:

• Is existing open-source software enterprise-ready?
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In other words, as the task requires the utilization of existing open-source solutions, a

fundamental aspect of this research is to investigate the behavior of the tools in a substan-

tial and paradigm enterprise environment such as the Mercedes-Benz one. The term be-

havior is used to describe the collation of the installation process between a local security-

free and an enterprise security strict environment. The goal is to identify the existence

or not of the security design in the open-source tools and list the required modifications.

Based on this exploration, this thesis will conclude how open-source solutions should be

designed to be utilized by organizations in real-life cases.





3 State of the Art

This chapter presents a comprehensive literature overview of the most current knowl-

edge around methodologies and tools relevant to the subject of the thesis. More specif-

ically, studying and understanding the following concepts is considered a prerequisite

for perceiving the different dimensions of the problem and the possible approaches to its

solution. In the first sections, the main goal is to introduce the updated status around sig-

nificant theoretical ideas and practical methodologies. That will help in formulating the

context of the task and composing feasible proposals to tackle it. Finally, the last section

presents a thorough outline of the technologies and the tools that can help implement the

solution.

3.1 FOSS

According to Stallman (2009), the FOSS term refers to Free and Open Source. During the

1960s and 1970s, free distribution of the programming code produced by researchers in

either academic or corporate environments was an unwritten rule of the scientific phi-

losophy (Andersen-Gott et al., 2012). In the 1980s, MIT sold some code developed by

its researchers to a private enterprise. This event was responsible for the genesis of the

FOSS movement. During that period, Richard Stallman, a researcher at MIT, commenced

the Free Software Foundation. The main objective of that organization was to express its

opposition against the commercial exploitation of software and promote the core ideas

of FOSS (FSF, 2021). The ideology behind open-source software is that developers are

freely authorized to operate, customize or share the source code of an application, as

long as they are adhering to specific copyright limitations (Ebert, 2008). Access to FOSS

automatically guarantees code enhancement, more efficient bug discovery, effective er-

11



12 3.1 FOSS

ror correction, and finally, software optimization to distinct requirements and hardware

systems (Bonaccorsi & Rossi, 2003). However, it is crucial to clarify that free software

doesn’t mean gratis. Stallman has numerous times described it as "..a matter of liberty and

not price · To understand the concept, you should think of free as in free speech, not as in free beer."

(Stallman, 2015).

Figure 3.1: Innovative FOSS solutions (Ebert, 2009)

During the last years, more and more global organizations such as Google, Microsoft,

and IBM, are investing in FOSS (Gürsakal et al., 2021). Nowadays, conventional software

development, in which an organization creates and produces a service or product from

the ground up, is rare because software architectures have evolved, they are more com-

plex, and companies are mainly interested in developing their applications using existing

frameworks (Ebert, 2008). The reasons that gradually lead more and more corporations

to open-source software can be justified by several arguments. Bonaccorsi and Rossi

(2006) distinguish the benefits companies can get by participating in open-source activi-

ties in three major categories: economic, technological, and social. For the first category,
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several studies (Dahlander & Magnusson, 2008; Dahlander, 2005; Ågerfalk & Fitzger-

ald, 2008; Ebert, 2009) indicate that using standard FOSS components creates profit for

the companies as they can focus on the core of the product they design. In parallel,

the maintenance, bug spotting, and future improvement costs of open source applica-

tions get reduced since the community developers are the ones who often do this job

by code contributions (Andersen-Gott et al., 2012). Besides, open-source software with

support by large communities tends to be more of high quality because the code is as-

sessed constantly by more developers than a company’s department (Ebert, 2009). Next,

from the technology perspective, FOSS triggers innovation (Figure 3.1) because, when

source code is freely accessible to everyone, radical ideas can be converted to new sys-

tems almost straightforwardly (Ebert, 2007). In addition, according to Andersen-Gott et

al. (2012), several international firms choose to transform their innovation strategies to

"open" because they recognize that they don’t have enough resources to discover or hire

every single genius developer. Finally, the social motivation of companies to open source

communities is an unwritten rule, a norm, that is accomplished by either contributing to

existing FOSS projects or creating new open-source services. In case of a violation of this

rule, corporations may have to suffer severe consequences since the trust of the commu-

nity contributors is affected (Bonaccorsi & Rossi, 2006). To conclude, companies that use

and contribute to FOSS can gain competitive advantages, as repeatedly proven through

literature and real-world examples. Mercedes-Benz AG fosters the utilization and devel-

opment of open-source systems, such as the DnA platform, to create a mutual benefit

among the company and the open-source communities.

3.2 Machine Learning

In the modern world, massive amounts of data are constantly being generated, whereas

experts predict an even bigger explosion of the data quantities in the near future (Miller,

2022). Furthermore, the existence of that many data creates an undeniable need for their

analysis, the extraction of useful information, and finally, the creation of practical ap-

plications based on them (Angra & Ahuja, 2017). Machine Learning (ML), a subfield of

Artificial Intelligence (Shinde & Shah, 2018; Chauhan & Singh, 2018), is one of the most
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effective methods to process data and create predictions utilizing different models. It is

an advanced part of computational algorithms developed to acquire knowledge from the

encompassing environment, mimicking human intelligence (El Naqa & Murphy, 2015).

In ML, a computer program executes various tasks, and it is supposed that the machine

has learned from its experience if its measured performance in these tasks improves as it

obtains more and more knowledge (Ray, 2019). According to Mitchell (1997): "A computer

program is said to learn from experience E with respect to some task T and some performance mea-

sure P, if its performance on T, as measured by P, improves with experience E". There are four

major categories of ML algorithms that one may select to use, depending on the type of

data that are available for training (Ray, 2019):

1. Supervised learning: The desired solutions, referred to as labels, are included in the

training data fed to the ML algorithms (Kang & Jameson, 2018). Supervised learn-

ing creates a process where the predicted results are compared to the actual re-

sults of input data (known as "training data") and constantly updates the model

until the results match the accuracy expected (Patel, 2018). Typical algorithms are

Support-vector machines, Linear regression, Decision trees, Neural networks, K-

nearest neighbor algorithm, etc.

2. Unsupervised learning: The training data don’t have labels (Kang & Jameson, 2018).

Algorithms like clustering are used to surmise the inherent data connections (Patel,

2018). Typical unsupervised learning algorithms are K-Means, etc.

3. Semi-supervised learning: Training datasets include mostly untagged data, but some

labeled data are there as well (Kang & Jameson, 2018). Semi-supervised learning

can be characterized as a supervised learning adjunction (Patel, 2018). Typical semi-

supervised learning algorithms are Laplacian support vector machines, etc.

4. Reinforcement learning: The algorithm learns on its own a "policy" (another term for

"the best strategy") about how to act in a given circumstance to obtain the maximum

rewards (Kang & Jameson, 2018). Compared to supervised learning, it does not

expect correct input/output data sets (Patel, 2018). Typical reinforcement learning

algorithms are Monte Carlo, Q-learning, etc.
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Over the last decades, Machine Learning has been widely adopted by several applica-

tions in various areas, mainly due to the evolution of computational power (Boutaba et

al., 2018). Robotics, natural language processing, search engines, video games, crime pre-

diction, and social media are only some of the many domains where Machine Learning

is used. In addition, the rapid development of cloud computing solutions enhances the

application of ML, as hardware such as GPUs and TPUs enable faster training of large

amounts of data (Boutaba et al., 2018). To summarise, Machine Learning plays a cru-

cial role in offering solutions for real-life problems by extracting knowledge from a large

quantity of accessible data (Alzubi et al., 2018). There are different ML algorithms avail-

able to be utilized by organizations and researchers to produce safe and rational decisions

based on available data.

3.3 Data Engineering

The rapid increase of available data, in combination with the standardization of the Ma-

chine Learning field in most modern organizations, has triggered an expansion of the

specialized roles inside the data teams (Saltz et al., 2016). In particular, the vast and infi-

nite data production has created the need for an area that will help in the data preparation

for Data Scientists. That area is known as Data Engineering. In fact, this is not more than

a further evolution of a widely used and known field that involves database technology

and tools: Data Preprocessing (Klettke & Störl, 2021). In his book, Kretz (2019) describes

Data Engineers as the connecting interface between an organization’s Data Strategy and

the Data Scientists working with the data. Undeniably the Data Engineering subject is

closer to Software Engineering than to Data Science. In the first two fields, engineers

are working on developing software to be used by others to generate results (Saltz et al.,

2016). As aptly described by Reddi et al. (2021), Data Engineers are responsible for de-

signing, implementing, and managing data creation pipelines for Data Scientists, using

techniques that result in time and cost-efficient solutions.

While the history of the database management systems is rooted in the past, the

technological evolution has brought several changes towards different dimensions. In
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a recent study, Klettke and Störl (2021) comprehensively distinguish and describe the

different generations of the Data Engineering methods:

1. Data Preprocessing is one of the most time-consuming and complicated tasks in data

science solutions. Therefore, it was progressed to a discrete field: Data Engineer-

ing. It includes several suboperations such as Data Understanding and Profiling,

Cleaning and Data Correction, and Data Transformation.

2. Data Engineering Pipelines are the combination of data algorithms in repeatable ex-

ecuted pipelines. There are several toolboxes available and applicable to different

data formats.

3. Data Engineering Workflows are related to the selection of the most suitable algo-

rithms for a specific task and their combination.

4. Automatic Data Curation is one of the most popular approaches to the solution pro-

cess automation of the data engineering tasks. It aims to either automate the data

curation process and execution of subtasks or generate recommendations on which

experts can base their decisions.

To conclude, Data Engineering is actually not a new field but the needed evolution of

existing tools and methodologies to support the rising demand for data processing. The

number of available data is constantly increasing, and thus the need for processing them

is continuously getting more significant. Data Engineering is crucial in this operation, as

Data Scientists should only focus on developing the models to exploit the data and not

on preparing them for this operation.

3.4 DevOps

In today’s advanced technological environment, where cloud applications are predom-

inant, software delivery and updates for customers are expected to take place in a con-

tinuous, fast, and efficient way (Lwakatare et al., 2016). Furthermore, to achieve the

above-noted, modern organizations strive to invent or implement new approaches to

software development, different from the traditional methods. Plenty of predicated agile
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methodologies already enable the engineering teams to rapidly adapt to the continu-

ously changing requirements, restrictions, or customer demands during the lifecycle of

a project while maintaining and enhancing it at the same time (Cois et al., 2014). Origi-

nated in the agile movement (Leite et al., 2020), DevOps comprise a collection of practices

that empower the collaboration and communication between developers and contribute

to quick, reliable, and quality software delivery (Perera et al., 2017). On the contrary

of the considerable acceptance and implementation of DevOps from several organiza-

tions around the world, according to the bibliography (Senapathi et al., 2018; Lwakatare

et al., 2016; Jabbari et al., 2016), there is still no standard definition of the term. How-

ever, almost every literature research (Jabbari et al., 2016) agrees that the formation of

the term DevOps is the combined result of the words: Developers and Operations. The

main objective of this software paradigm is to eliminate and eventually overcome the or-

ganizational silos (Lwakatare et al., 2016) by enabling cross-functional cooperation and

trust between the stakeholders of software development activities. Consequently, and

according to Perera et al. (2017), DevOps enhances the continuous development (CD)

target of the agile methodologies with the continuous integration (CI). Hence it enables

fast customer serving and effective market competition for companies.

Organizations can make use of DevOps practices to speed up innovation. That essen-

tially includes the creation and automation of software development and infrastructure

management pipelines (Freeman, 2019). Even though in literature can be found many

approaches around the practices, this thesis focuses on the six most popular operations:

1. Communication and Collaboration enhance the cooperation between developers and

operations (Jabbari et al., 2016). In general, organizations utilize chat apps, project

tracking systems, and wikis to establish strong culture rules around information

sharing (Freeman, 2019). Therefore, this allows all company sections (even other

departments like marketing and sales) to align more closely on goals and projects

by speeding up communication. Collaboration practices frequently empower team

members, particularly developers, who gain more influence over system operabil-

ity (Lwakatare et al., 2016).

2. Continuous Integration enables software engineers to integrate, into a central repos-
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itory, all the changes they make in code frequently, followed by automated builds

and tests execution. As a result, the bug discovery is faster, the quality of the

software is improved, and the verification/distribution time of software updates

is shorter (Freeman, 2019).

3. Continuous Delivery assures that the code is automatically built, tested, and config-

ured for a production release every time there are changes. After the building stage,

CD extends the concept of CI by deploying changes to either a test or production

or both environments. CD guarantees that the developers will always access an

artifact that has passed some standardized tests (Freeman, 2019).

4. Microservices is a cloud-native architecture where a single software application is

built as a bundle from small independent services and each of which: a) has a

unique scope, b) is autonomously deployable, and c) runs its process (Balalaie et al.,

2016). Typically, the different microservices communicate using application pro-

gramming interfaces (APIs) (Freeman, 2019). Hence, microservices, among other

things, enable scalability, easier bug detection, and faster shipping times.

5. Infrastructure as Code outlines the utilization of code for infrastructure management

and the application of software development techniques, like version control or

continuous integration (Lwakatare et al., 2016). With IaC, the interaction between

infrastructure and engineers is accomplished with code-based tools, allocation of

application environments is faster, and the deployment of the application at any

scale can be done automatically (Freeman, 2019).

6. Monitoring and Logging is a crucial practice that includes the implementation of

a continual feedback loop from the development to the production environment

(Lwakatare et al., 2016). As the service’s availability must be constant and remain

uninterrupted, the data and logs created by applications and infrastructure can be

collected, classified, and then examined to quickly identify the root cause of errors

or unexpected behavior (Freeman, 2019).

In conclusion, DevOps has become a de facto set of software development prac-

tices. And not without reason, as it is already multiple times proven that it can benefit

organizations with fast innovation, speedy delivery, reliability, and more when applied
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effectively.

Figure 3.2: The DevOps loop (Cekic, 2021)

3.5 MLOps

MLOps (Machine Learning Operations) is an adequately new term related to machine

learning models and software development. However, it has already managed (Figure

3.3) to become a rapidly increasing trend in Google searches. This fact indicates the grow-

ing attention to MLOps by both the scientific and corporate environments (Tamburri,

2020). Essentially, MLOps identify as DevOps for ML activities. Their underlying dif-

ference from DevOps relies on the characteristic that separates the ML models from the

traditional software: data (Breuel, 2020). Consequently, MLOps, are considered a com-

bination of three parts: DevOps, Machine Learning, and Data Engineering (Figure 3.4)

(Zhao, 2020).

The importance of DevOps principles for ML workflows is crucial since the devel-

opment of machine learning models has taken a radical position in many organizations

(Karamitsos et al., 2020). The core work of a Data Scientist is very often reputed to

be mostly around operations such as the development, training, and evaluation of ML

models. Nonetheless, as Sculley et al. (2015b) indicate in their research, the model’s code

usually comprises only a fragment of the total operations around an ML system (Figure

3.5). An ML workflow, basically a pipeline, includes several steps (Figure 3.6) that are

executed typically in different infrastructures. Furthermore, it is often normal that Data
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Figure 3.3: Google (2021a) Trends for
MLOps searches for years 2017-
2021.

Figure 3.4: MLOps

Scientists don’t have the special engineering skills required to configure the various ex-

ecution environments. In his paper, Tamburri (2020) mentions that about 75% of Data

Scientists are not Computer Scientists. Hence, this can lead to technical debt for an or-

ganization (Sculley et al., 2015b), including potential errors or overuse of resources (i.e.,

need for support by Software Engineers). MLOps aims to bridge this gap equivalently to

how DevOps assists in the fast development, testing, and deployment of less error-prone

and more quality software (Soh & Singh, 2020). The application of MLOps secures the

automation and monitoring of all the steps involved in an ML pipeline, such as integra-

tion, testing, releasing, deployment, and infrastructure management (Google, 2020). By

automating all of the stages needed in building a machine learning system, from develop-

ment to deployment, MLOps reduces the technical dept and creates reliable and efficient

ML systems (Ruf et al., 2021).

3.6 Tools & Technologies

It should be noted that the development of the solution in this thesis is based on various

technologies and tools. Nevertheless, the existence of Jupyter Notebooks in the DnA

platform constituted the starting point and the basis of the project. Following is presented

a comprehensive overview of the most essential tools that were used throughout the

research and implementation phase.
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Figure 3.5: Typical elements of an ML system (Sculley et al., 2015b)

Figure 3.6: A typical ML pipeline (Google, 2021b)

3.6.1 Jupyter Notebook

The Jupyter Notebooks is an open-source computational notebook accessed through a

web browser. More specifically, it is a tool where users can combine code development,

data, visualizations, explanatory text, and equations in a single document, acting as a

virtual lab notebook (Randles et al., 2017). Furthermore, Jupyter Notebook supports pro-

gramming in multiple languages (K, 2020). This characteristic boosted the popularity of

the tool among researchers significantly. Indeed, according to a GitHub study in 2018,

around 2.5 million Jupyter notebooks were published on the platform, 200,000 more than

in 2015 (Perkel, 2018). In addition, unlike other IDEs like VSCode, Jupyter Notebook is
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Figure 3.7: The tools used for the development of this thesis.

pretty handy when it comes to exploratory data analysis (EDA) because it provides an in-

line preview of the code results independently from other parts (Das, 2021). Nowadays,

it is considered the standard tool for data scientists and the development of end-to-end

data science workflows because it offers an interactive way to write code and easily com-

bine it with explanatory text or multimedia (Perkel, 2018).

3.6.2 Kubeflow & Kubeflow Pipelines

Kubeflow is an open-source suite of ML tools for Kubernetes originated from an inter-

nal Google project. Its goal is to make the deployment of ML systems on Kubernetes

faster and easier to manage by containerizing the components of the pipeline (Figure 3.6)

and placing them on the cluster in an abstract of technical difficulties way (Bisong, 2019).

More specifically, Kubeflow is a Kubernetes-native platform with several components

(Figure 3.8) responsible for orchestrating, deploying, and executing scalable ML work-

loads (Patterson et al., 2021). These components can be used holistically via installing

the entire Kubeflow suite, but at the same time, many of them can be utilized for specific

uses cases as standalone applications.

Kubeflow Pipelines is one of the core Kubeflow tools. It is responsible for build-

ing and managing end-to-end ML workflows, based on Docker containers (Kubeflow,

2021b), on Kubernetes infrastructure. As presented in Section 3.5, the development of a

machine learning system includes a set of several tasks which typically can not be rep-

resented by a single script. In addition, regularly, many parts have to be changed as the

model is being developed. Kubeflow Pipelines combine all these different tasks mod-

ularly by creating a form of a directed acrylic graph (Vasconcelos, 2020). Essentially, a

pipeline entails the required input parameters of each pipeline component and the in-
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Figure 3.8: The components of Kubeflow (Kubeflow, 2021a)

puts and outputs of each of them. Every pipeline component is a Docker image package

of a self-contained code set (Smedinga & Biehl, 2020). Since Kubeflow is a Kubernetes-

native platform, during the execution of a pipeline, a single or multiple pods are spawned

by the system to start the Docker containers, which accordingly execute the code sets.

Thanks to the containerized architecture, Kubeflow Pipelines enable a simple and easy

way to reuse, exchange or even replace different parts of the ML workflow at any time

(Patterson et al., 2021). The main components of the tool include (Bisong, 2019):

1. A user interface (UI) to manage and track machine learning pipeline runs, experi-

ments, jobs and enable easy collaboration between Data Scientists.

2. A scheduling engine for multi-step machine learning processes.

3. An SDK in Python -particularly handy for Data Scientists- to create or modify the

pipelines and their components.

Kubeflow Pipelines can act as a tool to leverage the gap between Kubernetes and

MLOps. But despite its distinct and obvious benefits still, there is plenty of specialized

work required to create a pipeline. More specifically, the typical steps include (Bisong,

2019):
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1. Writing the ML code

2. Creating the Docker images

3. Writing some form of DSL code for Kubeflow Pipelines

4. Compile the DSL code

5. Upload the pipeline to Kubeflow Pipelines

6. Run the Pipeline

Undoubtedly this is not productive as in case of possible changes -which tend to

happen very often- one must start again from the second step. Next is presented Kale, a

tool responsible for optimizing the workflow of the pipeline creation.

3.6.3 Kale

Kubeflow Automated PipeLines Engine (Kale) is an open-source tool designed to sim-

plify the conversion of ML models written in Jupyter Notebook into Kubeflow Pipelines.

In particular, Kale is an add-on for Jupyter Hub that significantly reduces the boiler-

plate steps 4 required to deploy a Kubeflow Pipeline by providing a click-button UI

(Guerrero, 2021). The core idea of Kale is the generation of a Python script by exploit-

ing the JSON structure of Notebooks (Fioravanzo, 2019). That is realized by annotating

both the Notebook (Notebook metadata) and its different cells (Cell Metadata) in order to

assign them to the appropriate pipeline components and declare their interdependencies

(Frikha, 2021). Then, the python script is executed to convert the model into a Kubeflow

Pipeline, run the pipeline and save it. Kale consists of four main modules which assure

its functionality (Fioravanzo, 2019):

1. The nbparser takes the Jupyter Notebook as input, parses it into metadata informa-

tion, and creates an internal graph representation of how the pipeline will eventu-

ally look like.

2. The static analyzer is used for the identification of the dependencies between the

pipeline blocks.

3. The marshal module injects the data between the different pipeline steps.
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4. The codegen is responsible for generating an executable Python script that spawns

and deploys a pipeline.

Moreover, Kale provides the opportunity to execute individual pipeline steps on

GPUs, which can dramatically reduce the costs of running a pipeline and, at the same

time, secure the power required for the computationally intensive parts. Last but not

least, the tool supports the usage of Kubeflow Katib, a component for hyperparameter

tuning and neural architecture search. In conclusion, Kale notably enhances the Kube-

flow Pipelines role as a Kubernetes MLOps tool since it simplifies the formation of a

pipeline directly from the model’s source code. With the direct conversion of a Jupyter

Notebook into a KFP pipeline, Kale secures that the processing building blocks are appro-

priately classified and independent from each other (Fioravanzo, 2019). The number of

the steps described in 3.5 is remarkably reduced, and at the same time, editing a pipeline

becomes easy. Therefore, Data Scientists can save up to three times more time for devel-

oping ML models (Figure 3.9).

Figure 3.9: Kale reduces the steps for the creation of a Kubeflow Pipeline (Fioravanzo &
Koukis, 2020)
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3.6.4 KServe

KServe, formerly known as KFServing (KServe, 2021), is a FOSS cloud-native tool spe-

cialized in machine learning models serving by providing a Kubernetes Custom Resource

Definition. That is an object that extends the Kubernetes API (Vasconcelos, 2021). KServe

supports several model-serving systems like TensorFlow, PyTorch, Nvidia Triton Infer-

ence Server, etc. Its main goal is to constitute the standard way of serving models, de-

ploying and monitoring inference services, and ultimately reduce significantly the time

required by the data scientists to put their models in production (Patterson et al., 2021).

It is adopted by major organizations like Nvidia, IBM, and Cisco. The main components

of the tool (Figure 3.10) include two widely used cloud-native technologies (Vasconcelos,

2021):

1. Knative is used for deploying and managing serverless workloads, something which

ensures auto scaling and thus optimization of the costs based on the demand.

2. Istio is used as a service mesh technology resulting in imperative features such as

Canary roll outs, load balancing, security, and more.

Thanks to these core components, KServe can run on a compute cluster that includes

a variety of hardware (GPU, TPU, CPU). Furthermore, the most crucial element of KServe

is the Inference Service. It is responsible for managing the served ml models’ life cycle,

and it is the one to call when an inference from a hosted model is required (Patterson et

al., 2021). The advantage of an Inference Service is that serving a model on KServe can

happen either via a cli using a YAML file or via the Python KServe SDK (Patterson et

al., 2021). As a result, KServe can be used as the standard framework for serving models

in production from both MLOPs Engineers who tend to prefer command-line tools and

Data Scientists who usually select Python code, bridging the gap between them.
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Figure 3.10: The architecture of KServe (Patterson et al., 2021)





4 Overall Approach

The outcome of the theoretical research around the Frameworks, the Technologies, and

the tools described in Chapter 3 was the composition of an MLOPs workflow for the DnA

platform. This chapter presents an overview of the CI/CD pipeline designed to automate

and holistically monitor the development phases behind ML systems.

4.1 MLOps Workflow

The design of MLOps lifecycles in the modern environments where ML models are be-

ing developed is a requirement for the age of AI. The reasons, which already analyzed

in Chapter 3, are multiple but mainly focused on two problems: the number of the ml

systems that fail to reach production is specifically high, and the technical debt between

Data Scientists and Software engineers leads to time and resources costs. Google (2020)

identifies that the automation of an ML CI/CD pipeline includes six distinct steps (Figure

4.1):

1. Development and experimentation include the development of the ML solutions

and outputs to the source code of the models.

2. Pipeline Continuous Integration (CI) describes the build process of the source code

and outputs to pipeline components.

3. Pipeline Continues Delivery (CD) outlays the deployment of the CI outputs.

4. Automated Triggering is related to the automatic Pipelines execution due to a sched-

uler or a trigger.

5. Model Continuous Delivery is achieved by serving the model and making it avail-

29
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able as a prediction service.

6. Monitoring refers to the information collected about the model based on the pre-

dictions and constitutes the set-off to start a new model cycle.

Figure 4.1: The 5 stages for MLOps by Google (2020)

Figure 4.2 presents the diagram of the MLOps workflow designed for the DnA Plat-

form. The basic layout of the lifecycle was based on a combination of the open-source

services the platform was initially offering (Jupyter Notebooks with Git integration) and

the selected open-source tools that originated in the Kubeflow ecosystem. The pipeline

fulfills the six stages described by Google. The users of the DnA Platform can utilize

Jupyter Notebooks to develop their ML models while storing the different code versions

in GitHub. When their source code is complete, they can use Kale directly from Note-

books to:

1. Build and deploy with a click of a button, portable, scalable, and containerized ML

workflows of their models in Kubeflow Pipelines

2. Store their ML models to a registry and serve them via KServe

The Monitoring stage is achieved by getting predictions using simple POST requests

to the models’ APIs. That can be done either directly from Notebooks or via any CLI.
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Furthermore, everything is reachable via the handy and user-friendly UI of Kubeflow

Central Dashboard. There, users can access their deployed Pipelines and served Models,

organize experiments, share their solutions to multiple contributors, schedule automatic

Pipeline executions, get insights about artifacts from their systems, and much more.

However, installing and integrating all these tools and services was rather compli-

cated and effortful. The next chapter presents all the challenges encountered during the

setup of the designed ML workflow and their respective solutions. The outcome of this

process is additionally providing data and information, interesting for the research ques-

tion presented in 2.

Figure 4.2: The MLOPs Workflow for the DnA Platform





5 Solution

The installation of the designated tools was a multi-step process. In the beginning, the

main goal was to demonstrate their feasibility, explore and test their features, and iden-

tify possible challenges and risks. Thus, for what is known as Proof of Concept (PoC),

JupyterHub, KFP, and KServe were deployed locally in a Docker-Desktop Kubernetes

cluster. This procedure required relatively short time and effort, as these tools, despite

their recent introduction to the technological world, had managed to attract several in-

terested parties who have already published some installation guides online. However,

quite often, these guides were missing crucial information, or they were not complete.

That led to some deeper exploration and debugging. Nonetheless, the local deployment

helped significantly in the PoC, and in the end, it acted as a demo of how the MLOps

workflow can work inside the DnA platform. Since the online coverage of the individual

steps was not enough at that time (November 2021), in Appendix A, one can find all the

necessary files and commands to set up the tools locally.

Then, the following steps were oriented around the setup of the MLOps tools in

the enterprise Kubernetes cluster of Mercedes-Benz AG. Initially, a plan was created to

prioritize the multiple tasks. The first major assignment was the set up of KFP, then

the installation of Kale in the JupyterHub of the DnA platform and the deployment of

KServe. In the end, the most important job was to flawlessly connect and integrate them

into the platform to achieve the objective of creating an open-source MLOps experience.

This chapter presents the challenges that occurred during the installation process in

the enterprise environment and the solutions to the respective problems.

33



34 5.1 Deploying KFP on an Enterprise Cluster

5.1 Deploying KFP on an Enterprise Cluster

The local installation of Kubeflow Pipelines is a relatively smooth process that one can

complete in a matter of time by applying two sets of customized manifests (as described

in Appendix A). However, the attempt to set up KFP on the Kubernetes cluster of any

enterprise, in this case in the security-oriented Mercedes-Benz AG, is rather challeng-

ing. This section describes the main problems that ensued during this process and the

modifications implemented to overcome them.

5.1.1 KFP Version and Kubernetes Manifests

Initially, the standalone deployment manifests set of Kubeflow Pipelines was selected

because the goal was to install the minimum components from the Kubeflow ecosystem.

That proved to be particularly handful in analyzing and tackling all the challenges related

to the KFP implementation in an enterprise environment. Nonetheless, the standalone

KFP deployment was not adequate as even the most current version of 1.7.0 (December

2021) doesn’t provide the multi-user isolation feature. Hence, more Kubeflow compo-

nents were required to achieve the multi-tenancy. The installation of Kubeflow Pipelines

in the Mercedes-Benz environment can be divided into two distinct parts:

1. the deployment of common components used in different Kubeflow projects,

2. the deployment of the required for the multi-user version of KFP components, and

3. the deployment of the multi-user KFP.

This implementation includes the most current and stable versions (Figure 5.1) of

the different components. Following is presented a comprehensive overview of each

module’s functionality and practicality:

1. Common components

• Cert-Manager was already installed in the DHC CaaS cluster as it is utilized

not only from Kubeflow but also from other applications. In general, this tool

is a Kubernetes add-on, responsible for issuing, managing, validating, and

updating TLS certificates from several issuers such as ACME or SelfSigned.
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Figure 5.1: The components used for the KFP installation

• Istio and Kubeflow Istio Resources. Istio was already deployed and used in the

DHC CaaS cluster by numerous applications. It is one of the most popular

and widely adopted open-source service meshes. More particularly, it acts

as an additional service networking layer that enables network authorization,

routing policies, and secure connectivity between different microservices. Ad-

ditionally, the Kubeflow Istio Resources is a configured set of manifests that

creates the Istio resources required by Kubeflow. Mainly it generates an Is-

tio Gateway called Kubeflow-Gateway, which is essentially a load balancer to

distribute network traffic between the Kubeflow components.

• OIDC Auth Service enables the usage of an OIDC client by extending the Istio

Ingress-Gateway. That was crucial for the multi-user version of KFP because

Mercedes-Benz has its own custom-made OIDC Provider to allow employees

accessing the internal services. Besides, since multi-tenancy is required, the

authentication of users is a must. The OIDC Auth Service grants the utilization

of any OIDC provider that implements the OAuth 2.0 protocol.

• Kubeflow Roles is a set of manifests that creates the Kubeflow ClustersRoles

used for the different user permission levels. There are three different Clus-

teRoles: view, edit, and admin.
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2. Multi-User Kubeflow Pipelines dependencies

• Central Dashboard is the UI Kubeflow component. While typically, each Kube-

flow tool has its UI element (i.e., Kubeflow Pipelines UI), the Central Dash-

board acts as a housing for the different UIs (Figure 5.2). In addition, the home

page provides an overview of the user’s operations and several shortcuts to

internal (for instance, recent runs) and external (for example, documentation

pages) sources. The advantage of this component is that it is modular and eas-

ily configurable, which means that the modules that are not used (for instance,

Katib) can be removed from the UI. Last but not least, the home page can be

adjusted to include shortcuts to desired destinations.

• Admission Webhook is used to modify or inject default specs (env vars, vol-

umes) to pods. In particular, Kubeflow provides several PodDefault manifests

describing runtime requirements (for example, certificates) that must be in-

fused into a pod when spawned. The PodDefault manifests specify the Pods

to which they apply. When a pod creation is requested, the Admission Web-

hook searches for the proper PodDefault manifest (if any) and mutates the Pod

specs accordingly.

• Kubeflow Profiles Controller is the fundamental component used by Kubeflow

to achieve the desired multi-user isolation. More specifically, multi-tenancy is

accomplished firstly by namespaces in which a user or a group of users are

isolated and secondly by Profiles which are unique configurations per user.

The Kubeflow Profile Controller is responsible for every profile:

– for managing the RBAC RoleBinding to define the namespace administra-

tor

– for managing the Istio namespace-scoped ServiceRole and ServiceRoleBind-

ing, which allows the profile owner to access services inside the names-

pace via Istio

– for setting up the editor and viewer Service Accounts used by the user-

spawned pods
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• Kubeflow Access-Management (KFAM) allows self-serving Kubeflow by giving

permissions to each user to create, automatically via UI, its profile, therefore

namespace. While this option was pre-enabled initially, it is usually not de-

sired in an enterprise environment for the reasons described in 5.1.6. Eventu-

ally, it was disabled in the Mercedes-Benz AG environment.

Figure 5.2: Example of the Kubeflow Dashboard

3. Multi-user Kubeflow Pipelines components

• API Service is used to build, run and manage pipelines via a REST API. The

operations definitions and descriptions are thoroughly reported on the official

Kubeflow documentation page (Kubeflow-authors, 2021).

• Argo Workflow Controller is the fundamental workflow execution engine for the

Kubeflow Pipelines. It is an open-source tool that is particularly handy in or-

chestrating Kubernetes jobs to run in parallel like multi-step workflows, which

essentially the Kubeflow Pipelines are. Kubeflow is offering for the integration

with KFP a pre-configured Argo Workflow Controller config map. The main

functionality of the tool derives from the workflow executor, a process that

follows a defined interface to allow Argo to execute tasks such as monitoring

pod logs, collecting artifacts, managing container lifecycles, and so on. Argo

Workflow supports various workflow executors types. While the most popu-

lar one, and the default until version 3.2, was the Docker executor, in June 2021,

a new executor, Emissary, was released. Its main advantage is that it is more
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secure than the others, as it does not require privileged or root access. The

Emissary executor became the new default option in the Argo Workflow en-

gine because security is considered more important, despite its current lower

reliability compared to the Docker executor. The KFP version installed in the

DHC CaaS cluster uses the Docker-executor as default. Nonetheless, it also

provides an easy way to replace it with the Emissary one. As a result, and

due to security restrictions in the Mercedes Benz environment, where no tool

is allowed to run with root privileges, the emissary executor got chosen for the

Argo Workflow Controller.

• Cache Deployer and Server provide one of the most crucial features of KFP, step-

level caching. Each time a pipeline is running, KFP validates the existence or

the executed step. If the task is already complete from a previous run, then

the computation of the particular part is skipped to reduce computational and

time costs, and the results are loaded from the cache. Alternatively, if the step

is for the first time executed, its execution gets cached. This feature is by de-

fault enabled for all tasks.

• Pipelines Profile Controller is in charge of deploying in the user namespace, ev-

ery time a profile is generated, two plugins, the UI Artifact and the Visualiza-

tion Server. The two plugins are used to visualize the output produced from

the execution of the pipeline components.

• Pipelines UI enables users to perform several operations related to KFP. More

specifically, through the Pipelines UI, which is accessible via the Central Dash-

board (Figure 5.2), users can enter the following tabs:

– Experiments tab that contains groups of one or more pipeline runs and

the ability to create new experiments

– Pipelines tab that contains the definitions and the different versions of

generated pipelines and the ability to upload a new pipeline

– Runs tab that contains the pipelines that already run and the ability to

create a new run
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– Recurring Runs tab that contains the recurring pipeline runs and the abil-

ity to schedule a new run

– Artifacts tab that contains the outputs emitted by an executed pipeline

– Executions tab that contains information about executed pipeline steps

• Metacontroller is a widely used Kubernetes add-on that enables the easy cre-

ation and deployment of custom Kubernetes controllers (Metacontroller, 2021).

For the KFP, the Metacontroller is used to define the Pipelines Profile Con-

troller.

• Metadata components are used to record and retrieve metadata from the exe-

cution of pipelines. Data such as the Artifacts, Executions, Events, and more

are written in and loaded via the Metadata Store from the storage backend.

This feature is crucial for the KFP, and it provides numerous benefits. For in-

stance, determining if execution has run with the same data input in the past,

identifying all the artifacts generated from a specific artifact, comparing two

artifacts, etc.

• MinIO serves as the default storage option for the KFP artifacts. Namely, the

pipeline packages, views, and metrics. It is worth mentioning that Kubeflow

supports different storage types, including s3, on-prem, etc.

• MySQL is utilized as the database for the KFP metadata, such as experiments,

jobs, pipeline runs, etc.

• Pipeline Persistence Agent monitors and preserves the resources generated by

the Pipeline Service in the Metadata Service. Additionally, this module records

the parameters and the data artifact URIs of the executed containers.

• Pipeline Scheduled Workflow is used for creating recurring pipeline runs. Those

runs can be adjusted by a run trigger, for instance, a periodic trigger to run the

pipeline every 1 hour. In addition, the recurring runs allow the user to specify

the run required parameters.

• Pipeline Viewer Controller is responsible for the web views management of in-

stances like the Tensorboard ones directly in the Pipelines UI.
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5.1.2 Public Registry Docker Images

The Kubeflow components are packed into Docker images, which come with multiple

and already widely known advantages such as isolation, mobility, flexibility, modular-

ity, etc. Those Docker images are stored in a public container registry named Google

Cloud Registry to enable open-source users around the globe to use them freely when in-

stalling Kubeflow. Nevertheless, these registries are usually not used in an enterprise

environment due to potential security and privacy flaws. Most of the organizations,

like Mercedes-Benz, have their own private registries to control which images are stored

where and apply custom configuration options such as authentication, logging, etc. The

Docker images used in the selected Kubeflow manifests were pulled, checked for poten-

tial security issues, and pushed to the private Docker registry of Mercedes-Benz, called

Harbor, to overcome this problem. The Docker images list can be found in Figure 5.3.

Figure 5.3: The public images used in this deployment

5.1.3 Non-root Installation

One of the most crucial drawbacks behind the Kubeflow deployment is the lack of secu-

rity design. The majority of Kubeflow components are by default requesting advanced

privileges, something which in a real-life enterprise environment is in any case unaccept-

able. During the project, the challenge of transforming the numerous Kubeflow modules

into secure setups without affecting their functionality was the most demanding and
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time-consuming process. In the beginning, the installation in the DHC CaaS cluster took

place with the original manifests. As the security policy applied in Mercedes-Benz is in-

tensely strict, the issue was spotted it immediately. The containers couldn’t be spawned

at all, as they were based on Docker images requesting root privileges (Figure 5.4). The

solution to mitigate this problem had to be abstract and applicable to as many parts as

possible to minimize the effort and the functionality affection.

Figure 5.4: Example of the error message when using the default MinIO manifest

The most suitable way to configure a Pod’s or Container’s privilege and access con-

trol settings is via Kubernetes. Kubernetes provides the Security Context feature that en-

ables the application of a constraint set to a container. By principle, the Security Context

is used to lessen the security risks inside a system with multiple deployments. Similarly,

for the KFP installation in the DHC CaaS cluster, the Security Context was added to run

all the services as distinct non-root users. While there are provided at least ten differ-

ent setting options by Kubernetes (Smalling, 2021), the following were sufficient for the

project:

1. runAsNonRoot is a boolean Security Context setting to declare if the container of a

pod should run as a non-root user. If true, then during runtime, kubelet will check

if the Docker image requires to run as root (UID = 0) and if so, it won’t let the

container start (Goltsman, 2019).

2. runAsUser, determines the user, via the User ID (UID), to run the container Entry-

point and the processes within. If this setting is not applied then, the default user of

the image will be used. For security reasons, the user with ID 0 (root user) shouldn’t

be used (Goltsman, 2019).

3. runAsGroup, specifies the primary group, via the Group ID (GID), to run the pro-
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cesses inside a container. If this setting is not applied then, the default group of

the image will be used. The group with ID 0 (root) shouldn’t be used (Kubernetes-

authors, 2021).

4. fsGroup declares the group, via the group ID (GID), that will be the owner of the

filesystem and every new file added in every container inside a pod. Concurrently,

the fsGroup Security Context specifies the owner of any volume mounted and thus

who can write to it (Smalling, 2021).

The settings were applied to all the modules to reduce the security risks. Neverthe-

less, it must be noted that in many cases, different UIDs or GIDs were used, depending

on the default individual Docker images users (Listing 5.1). For the Docker images where

the default UID and GID were impossible to detect or not declared, the user and group

nobody (ID = 65534) were selected.

Listing 5.1: The user 8737 was selected because this ID is the default in the argo-workflow Docker image

apiVersion: apps/v1

kind: Deployment

metadata:

name: workflow-controller

spec:

selector:

matchLabels:

app: workflow-controller

template:

metadata:

labels:

app: workflow-controller

spec:

securityContext:

runAsNonRoot: true

fsGroup: 8737

runAsGroup: 8737

runAsUser: 8737

...
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To conclude, transforming the Kubeflow installation into a secure setup was de-

manding, required a lot of exploration and try-and-error processes. This fact already

hints that despite the promising core idea behind the tool and the, in general, well-

organized open-source community support, Kubeflow is not in any case ready for en-

terprises purposes. Nevertheless, all the implemented security changes are planned to

be contributed to the Kubeflow community to judge if they are acceptable or if they can

furtherly be optimized and finally adopted.

5.1.4 Certificate Signing Requests

Caching is one of the most promising features of KFP. Each time a pipeline step is the

same as an already executed, the results are loaded from the cache server. Therefore,

there is no need to re-run the whole pipeline each time a part of the ML model gets

adjusted. Undoubtedly, caching can lead to crucial cost and time reductions, making the

MLOps lifecycle more efficient. As described in 5.1.1, caching is accomplished in KFP via

two interdependent modules: the cache deployer and the cache server. The naming already

indicates that the cache deployer is the module responsible for deploying the cache server.

While trying to set up the modules in the DHC CaaS cluster, it was noted that the

installation couldn’t be completed. The reason was that the cache deployer is built to gen-

erate a Signed Certificate for the cache server by referring to the Kubernetes Certificate-

SigningRequest API (Listing 5.2).

Listing 5.2: Original K8s CSR

...

cat <<EOF >> ${tmpdir}/csr.conf

[req]

req_extensions = v3_req

distinguished_name = req_distinguished_name

[req_distinguished_name]

[ v3_req ]

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

extendedKeyUsage = serverAuth
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subjectAltName = @alt_names

[alt_names]

DNS.1 = ${service}

DNS.2 = ${service}.${namespace}

DNS.3 = ${service}.${namespace}.svc

EOF

openssl genrsa -out ${tmpdir}/server-key.pem 2048

openssl req -new -key ${tmpdir}/server-key.pem -subj "/CN=${service}.${

namespace}.svc" -out ${tmpdir}/server.csr -config ${tmpdir}/csr.

conf

echo "start running kubectl..."

# clean-up any previously created CSR for our service. Ignore errors if

not present.

kubectl delete csr ${csrName} 2>/dev/null || true

# create server cert/key CSR and send to k8s API

cat <<EOF | kubectl create -f -

apiVersion: certificates.k8s.io/v1beta1

kind: CertificateSigningRequest

metadata:

name: ${csrName}

spec:

groups:

- system:authenticated

request: $(cat ${tmpdir}/server.csr | base64 | tr -d '\n')

usages:

- digital signature

- key encipherment

- server auth

EOF

# verify CSR has been created
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while true; do

kubectl get csr ${csrName}

if [ "$?" -eq 0 ]; then

break

fi

sleep 1

done

# approve and fetch the signed certificate

kubectl certificate approve ${csrName}

# verify certificate has been signed

for x in $(seq 10); do

serverCert=$(kubectl get csr ${csrName} -o jsonpath='{.status.

certificate}')

if [[ ${serverCert} != '' ]]; then

break

fi

sleep 1

done

if [[ ${serverCert} == '' ]]; then

echo "ERROR: After approving csr ${csrName}, the signed certificate

did not appear on the resource. Giving up after 10 attempts."

>&2

exit 1

fi

echo ${serverCert} | openssl base64 -d -A -out ${tmpdir}/server-cert.

pem

echo ${serverCert} > ${cert_output_path}

# create the secret with CA cert and server cert/key

kubectl create secret generic ${secret} \

--from-file=key.pem=${tmpdir}/server-key.pem \

--from-file=cert.pem=${tmpdir}/server-cert.pem \

--dry-run -o yaml |
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kubectl -n ${namespace} apply -f -

The usage of API server certificates in the Mercedes-Benz AG is restricted because

those allow permission escalation. The security risk is critical, as by using this API, users

can order certificates that let them impersonate both Kubernetes control plane and DHC

CaaS team access. The goal was to adjust the cache deployer’s certificate generation pro-

cess without affecting the actual functionality to avoid loosening the security restrictions.

With the help of the DHC CaaS administrator team, it was pointed out that the Kuber-

netes CSR API usage could be exchanged with CSRs generated by the widely-known

OpenSSL. Indeed, the changes were implemented inside the script that is responsible for

the CSR creation (Listing 5.3), and the cache deployer Docker image was adjusted accord-

ingly to use this script. With this optimization, installing the caching tools was accom-

plished in a more secure and plain, in terms of coding lines, manner. The implemented

security changes are planned to be contributed to the Kubeflow community to judge if

they are acceptable or if they can furtherly be optimized and finally adopted.

Listing 5.3: OpenSSL CSR

...

cat <<EOF >> ${tmpdir}/csr.conf

[req]

x509_extensions = v3_req

distinguished_name = req_distinguished_name

[req_distinguished_name]

[v3_req]

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

extendedKeyUsage = serverAuth

subjectAltName = @alt_names

[alt_names]

DNS.1 = ${service}

DNS.2 = ${service}.${namespace}

DNS.3 = ${service}.${namespace}.svc

EOF
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# Due to security constraints we cannot use the Kuberentes CSR,

therefore we create an openssl certificate

openssl req -x509 -nodes -newkey rsa:4096 -keyout $tmpdir/server-key.

pem -out $tmpdir/server-cert.pem -sha256 -days 3650 -config ${

tmpdir}/csr.conf -subj "/CN=${service}.${namespace}.svc"

openssl base64 -in ${tmpdir}/server-cert.pem -A -out ${cert_output_path

}

# create the secret with CA cert and server cert/key

kubectl create secret generic ${secret} \

--from-file=key.pem=${tmpdir}/server-key.pem \

--from-file=cert.pem=${tmpdir}/server-cert.pem \

--dry-run -o yaml |

kubectl -n ${namespace} apply -f -

5.1.5 Exposing the KFP UI

The default way to access the Kubeflow UI is via port-forwarding of the Istio - Ingress

Gateway service, created after the installation. In addition, the documentation explicitly

specifies that to connect to Kubeflow from outside the Kubernetes cluster, HTTPS must

be set up because Secure Cookies are used from various components. In the case of the

DHC CaaS cluster, a sub-host with SSL encryption to enforce HTTPS was created, and

the Istio - Ingress Gateway service was exposed via an Ingress load balancer (Listing 5.4).

Listing 5.4: Kubeflow Ingress

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

name: kubeflow-ingress

annotations:

traefik.frontend.rule.type: PathPrefix

kubernetes.io/ingress.class: traefik

traefik.ingress.kubernetes.io/router.tls: "true"
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traefik.ingress.kubernetes.io/router.entrypoints: websecure

cert-manager.io/cluster-issuer: ******-****

spec:

rules:

- host: kfp.dna-dev.app.*******.net

http:

paths:

- backend:

service:

name: istio-ingressgateway

port:

number: 80

path: /

pathType: Prefix

tls:

- hosts:

- kfp.dna-dev.app.*******.net

secretName: kfp-tls-secret

5.1.6 OIDC & Multi-User Isolation

The main idea behind the DnA platform is to provide a set of tools to users to create,

manage and share their data analytics-oriented solutions. Following this pattern, the

goal of this thesis was to design and implement a complete MLOps pipeline within the

DnA platform, which would enhance the user experience and reduce the technical debt.

Since, DnA is scoped as a multi-user toolkit platform, enabling multi-user isolation is

crucial for transparency and efficient usage of infrastructure and operations.

The first step towards multi-tenancy is the ability for users to connect to their own

space, achieved by using authentication mechanisms. For consistency, many enterprises,

like Mercedes-Benz, provide users a common way to sign in to the different organization

services. Furthermore, authenticating with a single account is also used widely in public

platforms. For instance, users can use their email account to sign in to other services,

like a music or a cloud storage service. The most common practice around end-user
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authentication promotes the utilization of the OAuth2 protocol by an OIDC provider.

Mercedes-Benz AG uses the Mercedes-Benz AG Global Authentication System (GAS-

OIDC), a custom OIDC provider, to enable a single sign-on between different company

applications. Concurrently, the first step for the multi-tenancy in the KFP installation

was to integrate it with the GAS-OIDC (Figure 5.5). Since Kubeflow utilizes the OIDC

Auth Service described in 5.1.1, the connection between the GAS-OIDC and the KFP

was accomplished by specifying the GAS-OIDC Endpoint, the redirect URL, the OIDC

scopes, and the USERID claim as seen in the Listing 5.5. The OIDC Auth Service supports

the integration with almost any OAuth2 OIDC provider. As a result, this process was

straightforwardly implemented.

Figure 5.5: Mercedes-Benz AG Global Authentication System (GAS-OIDC)

Listing 5.5: KFP and GAS-OIDC integration

OIDC_PROVIDER=https://***-**.*****.com

OIDC_SCOPES=email

REDIRECT_URL=https://kfp.dna-dev.app.*******.net/login/oidc

USERID_HEADER=kubeflow-userid

USERID_PREFIX=

USERID_CLAIM=sub

PORT="8080"

STORE_PATH=/var/lib/authservice/data.db
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The second step includes the implementation of the multi-user spaces. More specifi-

cally, Kubeflow supports multi-tenancy for several components such as the Central Dash-

board, KFP, etc. The main module used for this operation, as described in 5.1.1, is the

Kubeflow Profile controller. During the project implementation period (October 2021

- March 2022), Kubeflow provided two ways for creating a user’s profile. On the one

hand, there is the manual way, where an admin is responsible for creating each profile

by applying in the Kubernetes cluster the required resources (RBAC, ServiceRole, etc.).

As the DnA platform is oriented towards thousands of users, this option is not efficient

nor productive, but at the same time, it ensures the strict and secure management of

users. On the other hand, Kubeflow offers, via KFAM, an automatic way where users

need to specify only the name of their profile, and the rest is taking place automatically

in the background. It is worth mentioning again that the profile name corresponds to the

namespace name created for the user. This option is more efficient for an environment

with numerous users, but it lacks applying a specific policy around user-profiles and can

lead to potential management and security issues. A characteristic example is that a user

may want, for malicious reasons, to create a namespace called after another user’s name.

Furthermore, a disadvantage of this profile creation process is that profile management

becomes particularly difficult because no naming policy is applied. As a result, the chal-

lenge was to design an automated process for the DnA platform, so users could get KFP

profiles that would follow a specific policy and wouldn’t involve the user or an admin in

the process.

The main point behind the solution of this challenge for the DnA platform is to auto-

matically create KFP profiles for users who spawn their JupyterNotebook instance. More

specifically, as the DnA platform utilizes the JupyterHub as a service, customization is

achievable via the hub configuration file. Via this file, the JupyterHub can be modified

to spawn, in various ways customized, JupyterNotebooks. The hub configuration file

was already used in the case of the DnA platform for a variety of settings. The overall

architecture can be seen in Figure 5.6. Users log in to the DnA platform, and when they

launch JupyterHub for the first time, a JupyterNotebook instance and a KFP profile are

generated inside their custom namespace. For the KFP automatic profile generation, the

following steps implemented:
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1. Created a kustomization.yaml (Listing 5.6) to include all the necessary resources

that, by design, the KFAM module would generate and apply during the automated

profile creation by the user, such as the Kubeflow profile instance, RBAC, Service

accounts, etc.

Listing 5.6: The kustomization.yaml used for the Kubeflow Profile generation

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

resources:

- networking-policy.yaml

- profile-instance.yaml

- pod-default.yaml

- envoy-filter.yaml

- kale-workflow-rbac.yaml

- ml-pipeline-authorization.yaml

- notebooks-authorization.yaml

configMapGenerator:

- name: default-install-config

namespace: kubeflow

envs:

- params.env

vars:

# These vars are used for substituing in the parameters from the config

map

# into the Profiles custom resource.

- name: user

objref:

kind: ConfigMap

name: default-install-config

apiVersion: v1

fieldref:

fieldpath: data.user

- name: profile-name

objref:
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kind: ConfigMap

name: default-install-config

apiVersion: v1

fieldref:

fieldpath: data.profile-name

- name: sa

objref:

kind: ConfigMap

name: default-install-config

apiVersion: v1

fieldref:

fieldpath: data.sa

configurations:

- params.yaml

2. An additional resource (Listing 5.7) of kind Authorization Policy, named notebooks-

authorization, was created and included in the kustomization.yaml. The purpose

of this manifest is to allow the admin of the custom namespace, hence the user, to

access all the operations under the /notebooks/* path to spawn the Jupyter Note-

book instance.

Listing 5.7: The additional resource for the kustomization.yaml

apiVersion: security.istio.io/v1beta1

kind: AuthorizationPolicy

metadata:

name: notebooks-authorization

namespace: $(profile-name)

spec:

action: ALLOW

rules:

- when:

- key: source.namespace

values:

- $(profile-name)
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- to:

- operation:

paths:

- /notebooks/*

3. Since most of the above manifests are namespace-scoped, the goal was to make

them on the fly adjustable. That is achieved by creating an empty params.env file

that is being overwritten every time, based on the specific userid. The kustomiza-

tion resources user variables that are referring to the params.env file. In this way,

they can be adjusted easily in an automated process.

4. Next, the manifests were copied inside the JupyterHub Docker image.

5. The JupyterHub deployment was adjusted as follows:

• More privileged RBAC designated to the hub Service Account to allow the ap-

plication of the kustomization.yaml in the DHC CaaS cluster. Nevertheless,

using the c.KubeSpawner.service_account = "default-editor" inside the hub config

file (Listing 5.8), the default Service Account of the spawning JupyterNote-

book modified to match the restricted privileges that the user has in the KFP

profile. As a result, the spawned notebook remains secure and doesn’t provide

additional permissions to its user.

• The notebook namespace should be the same as the Kubeflow Profile name.

That is achieved by using inside the hub config file a KubeSpawner function

called user_namespace_template (Listing 5.8).

• Using the Kubespawner pre_spawn_hook in hub config, one can bootstrap work

that would run just before the spawning of the notebook starts. This feature

is crucial, as the goal is to apply the set of manifests that will create the Kube-

flow Profile, hence the namespace before the generation of the notebook. A

pre_spawn_hook function (Listing 5.8) was written to:

– Overwrite the params.env file with the necessary user-based values

– Apply the kustomization.yaml and its resources



54 5.1 Deploying KFP on an Enterprise Cluster

Listing 5.8: The modified part of the hub-config.yaml

...

c.KubeSpawner.service_account = "default-editor"

c.KubeSpawner.user_namespace_template = "kubeflow-{username}"

#Create a per-user namespace and Kubeflow Profile

def profile_prespawn_hook(spawner):

username = spawner.user.name

namespace = f"kubeflow-{username}"

sa = f"cluster.local/ns/{namespace}/sa/default-editor"

# overwrite the params.env file with username and namespace

with open("/tmp/kfp-user-namespace/params.env", "w") as file:

file.write(f"user={username.upper()}\nprofile-name={namespace}\

nsa={sa}\n")

cmd_kfp = f"kubectl apply -k /tmp/kfp-user-namespace"

subprocess.run(cmd_kfp, shell=True, check=True)

c.KubeSpawner.pre_spawn_hook = profile_prespawn_hook

...

In conclusion, the desired multi-tenancy is achieved by integrating the KFP deploy-

ment with the GAS-OIDC and creating an automated, secure, and enterprise-ready KFP

Profile creation process. Users can log in and use their MLOps instances, which are be-

ing safely and without any effort generated in their namespace. Additionally, the DnA

platform administrators’ endeavor is eliminated as their interaction in the process is not

required at all. The current implementation contributes to one of the main scopes of this

thesis: the reduction of the technical dept and the user experience improvement.

It must be noted, though, that the latest version of KFP used in this project (Decem-

ber 2021) doesn’t support isolation for:
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1. Pipeline definitions

2. Artifacts, executions, and other metadata entities

The overcoming of these limitations is already a work in progress for the future re-

leases of Kubeflow.

Figure 5.6: Architecture of the KFP profile generation process

5.1.7 Integration with the DnA Platform

Initially, the KFP UI was exposed as described in 5.1.5. Nevertheless, the integration

with the DnA platform was crucial, as the goal was to create a complete MLOps pipeline

that would enhance the user experience. The DnA users can access the KFP UI in two

different ways.

On the one hand, the access can happen directly from the Jupyter Notebooks via

the Kale UI. One of the principal features of this project is the flawless integration of the

tools used in the MLOps pipeline. Users develop their models in the Jupyter Notebooks,

and then, using Kale, they can create, upload and run a Kubeflow Pipeline effortlessly

from the same environment. As seen in Figure 5.7, the Kale UI generates two hyperlinks

during the uploading and running of a Kubeflow Pipeline. By clicking on them, users are
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directly transferred to the KFP UI and access the relevant information about the specific

pipeline.

Figure 5.7: Kale generates hyperlinks to access the KFP UI

On the other hand, the KFP UI should be accessible without uploading or running a

Kubeflow Pipeline each time. Consequently, a new tile was developed in the My Services

section of the platform (Figure 5.8). From there, users can access the KFP UI directly. The

DnA team plans to integrate the KFP UI, in a future release, inside the DnA platform,

such as Jupyter Notebooks are embedded.
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Figure 5.8: Accessing the KFP UI via the My Services section

5.2 Deploying Kale on an Enterprise Cluster

The local installation of Kale is an adequately easy process, as described in Appendix

A. Nonetheless, the setup of the tool in the existing JupyterHub installation of the DnA

platform and its connection to the KFP was a process that required several modifications.

This section describes all the implemented adjustments.

5.2.1 Kale Version and JupyterLab Extension

For the installation of Kale, the most recent and stable version got selected (v.0.7.0). In

particular, the Kale backend and the JupyterLab extension are available from the Python

Package Index (PyPI) repository. However, in order to have maximum flexibility around

the customization of the tool, Kale is installed directly from the GitHub repository. Specif-

ically, the Kale branch is cloned inside the JupyterLab single-user notebook Dockerfile.

Then, the setup takes place in three steps:

1. Installation of the required dependencies:

• For the selected version of Kale, the installation of the KFP SDK, which is

included in the source code, requires a specific version of the python library

enum34.

• One of the considerable drawbacks of Kale is that even its most updated ver-

sion (December 2021) supports version 2.x. of JupyterLab, while the most cur-
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rent one is version 3. The security impact was assessed, and after communica-

tion with the open-source community behind the development of Kale, it was

communicated that the support for the newer versions of JupyterLab is on the

team’s roadmap (Katsakioris, 2021).

2. Installation of the Kale backend:

• The necessary backend files are loaded from the tool’s source code.

3. Installation of the Kale lab extension:

• The necessary extension files are loaded from the tool’s source code.

In general, the above steps make the installation of Kale straightforward. Nevertheless,

the tool’s functionality in the secure environment of the Mercedes-Benz cluster is possible

only after the modifications described in the following sections.

5.2.2 Non-root Installation

Kale is a very handful tool designed to automate the generation of Docker containers

for each KFP component. Nonetheless, all the Kale versions are developed to spawn the

different containers by setting a Security Context. More specifically, every time a user

compiles a notebook using the tool, Kale generates a script according to which each con-

tainer can be run only from a user with root privileges. As expected, this can lead to

possible security incidents. Especially in an enterprise environment, running applica-

tions as root is considered a bad practice and highly prohibited. In the Mercedes-Benz

environment, the DnA platform cluster management responsible team, DHC CaaS, is ap-

plying a harsh policy regarding user permissions and security. When firstly attempted

to run a KFP generated by Kale, none of the pods could run. Hence, the pipeline was

unexecuted. The log analysis pointed out explicitly that the pods couldn’t run because:

the container has runAsNonRoot, and the image will run as root. Modifications to the tool’s

backend were required to eliminate the security impact. In particular, Kale is using three

jinja2 templates to generate the script for each KFP:
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1. nb_function_template

2. pipeline_template

3. py_function_template

Listing 5.9: Original (Kubeflow-Kale, 2021) Kale Security Context

...

_kale_{{ step.name }}_task.container.set_security_context(k8s_client.

V1SecurityContext(run_as_user=0))

...

In the pipeline_template (Listing 5.9), one can observe that for each KFP step, Kale sets

as running user the UID 0, which is the ID of the root user. Initially, the solution is to

modify the Security Context to any user with a UID > 0. In the case of the DnA platform,

the Security Context adjusted as follows:

Listing 5.10: Secure Kale

...

_kale_{{ step.name }}_task.container.set_security_context(k8s_client.

V1SecurityContext(run_as_user=8737, run_as_group=8737))

...

The user and group 8737 are chosen to match the pod Security Context, which is

already set for the workflow controller of the Kubeflow Pipelines (5.1). Finally, the neces-

sary change of the template is taking place during the installation of Kale in the Jupyter

Notebooks. In particular, the new security-oriented template overwrites the original in-

side the Docker image where installation takes place. As a result, Kale generates a script

where indeed, the KFP Security Context is secure, and the Kubeflow Pipeline containers

can run in an enterprise environment without potential harm.
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5.2.3 Kale and KFP Connection

Kale uses the Kubeflow Pipelines SDK to generate, upload and run pipelines. The con-

nection between the two modules requires the KFP SDK client (Listing 5.11).

Listing 5.11: Example of the KFP SDK Client usage

import kfp

# When not specified, host defaults to env var KF_PIPELINES_ENDPOINT.

client = kfp.Client()

print(client.list_experiments())

In particular, by defining two env variables, Kale can communicate with the KFP

deployment. These variables specify the endpoints of the ml-pipeline and the ml-pipeline-

ui services. The setting of the endpoints was implemented inside the hub-config file

mentioned in 5.1.6. There, JupyterHub enables the definition of environment variables

via the Kubespawner function described in Listing 5.12.

Listing 5.12: Defining the KFP SDK client env variables inside the hub-config file

...

c.KubeSpawner.environment.update(

{

"KF_PIPELINES_ENDPOINT": "http://ml-pipeline.kubeflow:8888",

"KF_PIPELINES_UI_ENDPOINT": "http://ml-pipeline-ui.kubeflow:80"

}

)

...

In conclusion, the endpoint env variables are read by the KFP SDK client, and there-

fore the connection between Jupyter Notebooks, Kale, and KFP is established without

any explicit arguments.

5.2.4 Marshal Volume and Artifacts Saving

The first step in every Kubeflow pipeline generated by Kale is the marshal volume’s

creation. The marshal volume, mounted in each pipeline step, is responsible for the data
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serialization. Those are the data that pass between the several pipeline steps.Executing

the different pipeline modules as the root user enables writing and reading data inside the

/marshal directory. However, escalated user privileges in an enterprise environment are

restricted, as described in 5.2.2. The pipeline steps are run by a non-root user. As a result,

the serialization of the data cannot be achieved, and the generated Kubeflow Pipeline will

fail. The solution was to pre-create the /marshal directory in the Docker image used for

executing the pipeline and change the access permissions. This was achieved by using

the following Unix chmod command:

chmod a=rwx,u+t /marshal

The command can be interpreted: Read, write, and execute permissions for the

/marshal directory are given to everyone. Nevertheless, the sticky bit (u+t) ensures that

files inside the /marshal directory may be renamed or removed only by their owner.

Consequently, the non-root user used in each pipeline step has the required permissions

to use the /marshal directory.

Listing 5.13: The original marshal volume naming

...

{% if marshal_volume %}

_kale_marshal_vop = _kfp_dsl.VolumeOp(

name="kale-marshal-volume",

resource_name="kale-marshal-pvc",

modes={{ pipeline.config.volume_access_mode }},

{%- if pipeline.config.storage_class_name %}

storage_class="{{ pipeline.config.storage_class_name }}",

{%- endif %}

size="1Gi"

)

...

Additionally, Kale uses, as described in 5.2.2, specific templates to generate the pipeline

scripts. There, the name of the marshal volume is defined to be the same for each user

(Listing 5.13). That can create several conflicts in a multi-user environment, especially

when an operation looks for the user’s specific persistent volume. A modification was
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implemented in the naming policy of the marshal volume to avoid this issue. More

specifically, an extra attribute was attached to include the namespace name (Listing 5.14).

As the namespace is unique for each user (Section 5.1.6), this solves the problem of refer-

encing the user-owned marshal volumes during the pipeline execution.

Listing 5.14: The modified marshal volume naming

...

{% if marshal_volume %}

_kale_marshal_vop = _kfp_dsl.VolumeOp(

name="kale-marshal-volume-{{ current_namespace }}",

resource_name="kale-marshal-pvc-{{ current_namespace }}",

modes=['ReadWriteOnce'],

{%- if pipeline.config.storage_class_name %}

storage_class="{{ pipeline.config.storage_class_name }}",

{%- endif %}

size="500Mi"

)

...

Last but not least, an additional modification was implemented in the script tem-

plates. More specifically, the pipeline metadata files are defined, by Kale, to be written

in a /tmp folder to ensure that non-root users can write or update them (Listing 5.15).

Nevertheless, this was not the case with the generated artifact files. Artifacts were saved

on a different folder than required root privileges. Following the metadata example, the

default directory was changed accordingly (Listing 5.16).

Listing 5.15: The original Artifacts saving directory

...

{%- if autosnapshot %}

_kale_output_artifacts.update({'mlpipeline-ui-metadata': '/tmp/

mlpipeline-ui-metadata.json'})

{%- endif %}

{%- if step.metrics %}

_kale_output_artifacts.update({'mlpipeline-metrics': '/tmp/
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mlpipeline-metrics.json'})

{%- endif %}

{%- if pipeline.processor.id == "nb" and step.name != "

final_auto_snapshot" and step.name != "pipeline_metrics" %}

_kale_output_artifacts.update({'mlpipeline-ui-metadata': '/tmp/

mlpipeline-ui-metadata.json'})

_kale_output_artifacts.update({'{{ step.name }}': '/{{ step.name }}.

html'})

{%- endif %}

{%- if pipeline.processor.id == "py" and step.artifacts and step.

name != "final_auto_snapshot" and step.name != "pipeline_metrics

" %}

_kale_output_artifacts.update({'mlpipeline-ui-metadata': '/tmp/

mlpipeline-ui-metadata.json'})

{%- for artifact in step.artifacts %}

_kale_output_artifacts.update({'{{ artifact["name"] }}': '{{

artifact["path"] }}'})

{%- endfor %}

{%- endif %}

...

Listing 5.16: The modified Artifacts saving directory

...

{%- if autosnapshot %}

_kale_output_artifacts.update({'mlpipeline-ui-metadata': '/tmp/

mlpipeline-ui-metadata.json'})

{%- endif %}

{%- if step.metrics %}

_kale_output_artifacts.update({'mlpipeline-metrics': '/tmp/

mlpipeline-metrics.json'})

{%- endif %}

{%- if pipeline.processor.id == "nb" and step.name != "

final_auto_snapshot" and step.name != "pipeline_metrics" %}

_kale_output_artifacts.update({'mlpipeline-ui-metadata': '/tmp/

mlpipeline-ui-metadata.json'})
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_kale_output_artifacts.update({'{{ step.name }}': '/tmp/{{ step.name

}}.html'})

{%- endif %}

{%- if pipeline.processor.id == "py" and step.artifacts and step.

name != "final_auto_snapshot" and step.name != "pipeline_metrics

" %}

_kale_output_artifacts.update({'mlpipeline-ui-metadata': '/tmp/

mlpipeline-ui-metadata.json'})

{%- for artifact in step.artifacts %}

_kale_output_artifacts.update({'{{ artifact["name"] }}': '/tmp' + '

{{ artifact["path"] }}'})

{%- endfor %}

{%- endif %}

...

In conclusion, Kale is an admirably useful open-source tool developed by Arrikto.

Nevertheless, the security design is missing. Without the described modifications, it

wouldn’t be possible to utilize Kale in an enterprise environment.

5.3 Deploying KServe on an Enterprise Cluster

The deployment of KServe in a local environment can be achieved effortlessly by apply-

ing the relevant customize manifests (Appendix A) and without any further adjustments.

Nevertheless, similar to the setup of the tools described in 5.1 and 5.2, installing KServe

in the secure enterprise environment of Mercedes-Benz demanded modifications. This

section reports the obstacles that occurred during the setup process, the adjustments

implemented, and finally, the development of additional features to enhance the tool’s

usability.

5.3.1 KServe Version and Kubernetes Manifests

The KServe installation in the DnA platform got initiated after the final deployment of

Kubeflow Pipelines. The version got selected from the component compatibility matrix
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provided by the Kubeflow organization. It is worth mentioning that KServe, is a rebrand

of the tool called KFserving. More specifically, in all the releases before the most up-

dated release, v0.7.0 (January 2022), the tool was named as KFServing. However, KServe

version 0.7.0 could not be integrated (Figure 5.9) with the rest of the tools deployed.

As a result, the most updated supported version got selected: v0.6.1. The KServe in-

stallation relies on three more tools: Istio, Cert Manager, and Knative. The first two were

already present in the DHC CaaS cluster due to their dependencies with the KFP installa-

tion. Therefore, the KServe installation in the Mercedes-Benz environment can be divided

into two distinct parts: the deployment of the Knative modules and the deployment of

KServe. Following is presented an overall outline of each module’s utility in serving ML

models:

Figure 5.9: The complete list of the Kubeflow Components deployed

1. Knative Components

• Knative Serving is the main Knative module, built on Kubernetes, to support

the rapid deployment and serving of applications as serverless containers by

providing a simpler deployment syntax. It enables automatic scaling, net-

work, and routing programming. Furthermore, this module is used to expose

services via a URL.

• Knative Eventing supports the event-driven characteristic of serverless applica-
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tions, and for this setup, it provides inference request logging. Knative Event-

ing, in particular, is used to transmit and receive events between event produc-

ers and sinks using simple POST requests. These events follow the CloudE-

vents requirements for abstractly expressing event data produced by several

sources (e.g., Kafka, S3, GCP PubSub, MQTT).

2. KServe Components

• KFServing Controller Manager is the main component of KServe, used to cre-

ate the requested services, ingress resources, and the Docker containers for

the model servers. Additionally, this module is responsible for generating

the model agent container used for request/response logging, batching, and

model pulling.

• KFServing Models Web App provides users a UI (Figure 5.10) to manage their

Model servers and delivers information derived from the Knative resources,

such as live logs from the served model pod. More specifically, using the Mod-

els UI, one can:

– Access the list of the deployed InferenceServices in the user’s and con-

tributed namespaces.

– Create a new InferenceService in the user namespace or a contribution

namespace using a YAML file.

– Delete an existing in the user namespace or a contribution namespace In-

ferenceService.

– Inspect an InferenceService’s status, specs, and YAML definition.

– Get live logs from the Model server pod.

– Access metrics when the deployment is integrated with Grafana.
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Figure 5.10: Examples of the KServe Models UI

5.3.2 Public Registry Docker Images

Analogous to the case of the Kubeflow Pipeline components, described in 5.1, the mod-

ules of KServe, are using Docker images stored in several public container registries

such as Docker Hub to make them available to the open-source community. However,

Mercedes-Benz utilizes a private Docker registry to monitor which images are used inter-

nally and configure them furtherly by adding features such as logging, etc. Since KServe

is providing support for all of the popular ML frameworks, the tool’s deployment in-

cludes:

• The Docker images used for its components

• Several Docker images to enable the usage of ML frameworks such as Tensorflow

or Sklearn etc.

All of the Docker images referred to the KServe manifests were pulled, analyzed,

optimized to avoid security risks, and pushed to the private Docker registry of Mercedes-

Benz, Harbor. The list with the Docker images is included in Figure 5.11.
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Figure 5.11: The public images used in this deployment

5.3.3 Non-root Installation

The development of this thesis includes an investigation about how enterprise-ready are

existing open-source tools. Homogenous to the before-mentioned tools and frameworks,

KServe lacks security design. That is due to the default request by most of the docker

images used in the deployment for root privileges. The security policy of Mercedes-Benz,

as already described in 5.1, is adequately strict and by default prevents the functionality

of any Docker image requesting advanced permissions. To overcome this challenge and

design a secure version of KSserve, settings similar to the KFP setup were applied. The

Security Context options provided by Kubernetes were utilized: runAsNonRoot, fsGroup,

runAsGroup, and runAsUser. The settings were enforced to all the manifests that were

requesting root privileges. Different UIDs and GIDs were selected based on the default

images’ users..

In conclusion, the conversion of the KServe setup into a secure deployment was

demanding. Based on the gained experience from the previous tools installation, the

process was completed in a relatively shorter time. Nonetheless, the lack of security

orientation also in this tool provides information about the research question indicating

that this version of KServe, despite the promising core logic, couldn’t be utilized by any

enterprise organization applying security policies.
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5.3.4 Integration with the DnA Platform

The KServe integration with the DnA platform was initially accomplished by enabling

the Models UI in the Kubeflow Central Dashboard. From there, users can access the

tool’s frontend component, and at the same time, all the Kubeflow tools are in one place.

KServe was selected to enable the serving and monitoring part of the MLOps lifecycle.

On the one hand, creating an InferenceService is possible via the Models UI. More ac-

curately, users can instantiate model servers, for already stored models, by applying a

simple yaml manifest (e.g., Listing 5.17). One of the most crucial features of the tool is

that it supports serving models stored in popular storage providers: Google Storage, S3

solutions, Azure Blog Storage, Local Filesystem, and Persistent Volume Claim. In paral-

lel, KServe offers a Python SDK, which includes several functionalities such as registering

and serving a stored model, prediction handling, pre/post handling, liveness handling,

and readiness handling. While the SDK usage can be convenient, importing the required

libraries and referring to the corresponding functions can be challenging and confus-

ing. Hence, the simple installation of the KServe SDK in the Jupyter Notebooks environ-

ment was not considered enough since the goal of this project was to create an MLOps

workflow to reduce the technical debt and enhance the Data Scientists user experience.

The requirement was to furtherly automate the serving process similarly to the Kale and

Kubeflow Pipelines one by requiring the minimum effort from the users.

Listing 5.17: Example of an InferenceService yaml file

apiVersion: serving.kubeflow.org/v1alpha2

kind: InferenceService

metadata:

annotations:

sidecar.istio.io/inject: 'false'

name: open-vaccine-0013

spec:

default:

predictor:

serviceAccountName: minio-models

tensorflow:
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storageUri: s3://models/kubeflow-kloizas/open-vaccine/0013/model.

tfkeras

minReplicas: 0

Kale, the tool used for the automatic conversion of Jupyter Notebooks to Kubeflow

pipelines, comes with the KServe Python SDK installed and offers a function for easy in-

tegration between the different Kubeflow modules. In particular, Kale provides a utility

that recognizes the types of ML models inside a notebook and then uses Rok, a licensed

product by Arrikto, to snapshot the current environment and create an InferenceService

just by passing a model object. As expected, this solution could not be utilized by the

DnA platform because the project’s objective required the creation of a holistically open-

source MLOps architecture. Nevertheless, due to the open-source format of Kale, modifi-

cations were implemented in the tool’s source code to develop two new features based on

the core integration functionality between the Kale and KServe. In particular, the custom

advanced properties were included in the Kale class: serveutils.

The first task was to enable serving an already stored model directly from the Jupyter

Notebooks. That incorporated the creation of two functions named serve_from_uri (List-

ing 5.18) and create_inference_service_from_uri (Listing 5.19).

Listing 5.18: The function developed to serve a stored ML model

def serve_from_uri(model_uri: str,

predictor: str,

name: str = None,

wait: bool = True,

preprocessing_fn: Callable = None,

preprocessing_assets: Dict = None) -> KFServer:

log.info("Starting serve procedure for model '%s'", model_uri)

if predictor not in PREDICTORS:

raise ValueError("Invalid predictor: %s. Choose one of %s"

% (predictor, PREDICTORS))
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if not name:

name = "%s-%s" % (podutils.get_pod_name(), utils.random_string(5)

)

# Validate and process transformer

if preprocessing_fn:

_prepare_transformer_assets(preprocessing_fn,

preprocessing_assets)

log.info("Creating inference service")

kfserver = create_inference_service_from_uri(

name=name,

predictor=predictor,

model_path=model_uri,

transformer=preprocessing_fn is not None)

if wait:

monitor_inference_service(kfserver.name)

return kfserver

The serve_from_uri function is the entry point for the automation of the serving pro-

cess. More specifically, this is the only function that users are required to reference in-

side their Jupyter Notebooks, by only passing a minimum set of information about their

stored models:

• The link to the model’s URI (an S3 bucket for the case of the DnA platform).

• The type of the model’s predictor (e.g., TensorFlow, sklearn or a custom, etc.).

• A name for their model server.

Additionally, users can specify extra parameters as seen in the function definition

in Listing 5.18. Then, this function calls the create_inference_service_from_uri and passes

the information given by users. Based on these data, a new yaml file, the definition for

the InferenceService, is created and then applied to the DHC CaaS cluster, utilizing the
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default provided Kale functions. As a result, users can directly serve using two code

lines a stored model from Jupyter Notebooks, just by importing the serve_from_uri and

running it.

Listing 5.19: The function developed to create an InferenceService for a stored ML model

def create_inference_service_from_uri(name: str,

predictor: str,

model_path: str,

image: str = None,

port: int = None,

transformer: bool = False,

submit: bool = True) -> KFServer:

if predictor not in PREDICTORS:

raise ValueError("Invalid predictor: %s. Choose one of %s"

% (predictor, PREDICTORS))

if predictor == "custom":

if not image:

raise ValueError("You must specify an image when using a

custom"

" predictor.")

if not port:

raise ValueError("You must specify a port when using a custom"

" predictor.")

predictor_spec = CUSTOM_PREDICTOR_TEMPLATE.format(

image=image,

port=port,

model_path=model_path)

else:

if image is not None:

log.info("Creating an InferenceService with predictor '%s'."

" Ignoring image...", predictor)

if port is not None:

log.info("Creating an InferenceService with predictor '%s'."
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" Ignoring port...", predictor)

predictor_spec = MINIO_PREDICTOR_TEMPLATE.format(predictor=

predictor,

model_path=model_path)

infs_spec = yaml.safe_load(RAW_TEMPLATE.format(name=name))

predictor_spec = yaml.safe_load(predictor_spec)

infs_spec["spec"]["default"]["predictor"] = predictor_spec

if transformer:

transformer_spec = yaml.safe_load(

TRANSFORMER_CUSTOM_TEMPLATE.format(

image=podutils.get_docker_base_image(),

model_path=model_path

))

infs_spec["spec"]["default"]["transformer"] = transformer_spec

yaml_filename = "/tmp/%s.kfserving.yaml" % name

yaml_contents = yaml.dump(infs_spec)

log.info("Saving InferenceService definition at '%s'", yaml_filename

)

with open(yaml_filename, "w") as yaml_file:

yaml_file.write(yaml_contents)

if submit:

_submit_inference_service(infs_spec, podutils.get_namespace())

return KFServer(name=name, spec=yaml_contents)

The second added feature enables serving a model developed in Jupyter Notebooks

directly from the working environment. This task was more complex, as an ML model

requires before being served to be saved. The solution to this challenge was to exploit

the MinIO S3 storage installation provided by the KFP deployment (5.1.1). There, it was

created a distinct bucket named models. Furthermore, the serve function developed by

Kale in the serveutils was modified (Listing 5.20) to support storing the ML models in the
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MinIO bucket, creating an InferenceService based on that, and removing the dependen-

cies to the Rok licensed product. It is also worth mentioning that different model types

are saved in distinct formats. For instance, a sklearn model includes only a file, whereas a

TensorFlow model comprises a directory with several files. Since Kale is already provid-

ing a way to save models locally, the following modifications were developed to achieve

the overall goal:

• The addition of the version parameter to secure that different model versions can

be stored and served to avoid the application of an InferenceService that has the

same name as an existing one.

• The detection of the model’s format (a file or a directory) based on which the proper

function is called to store the model in MinIO.

• The addition of a function called save_file_to_minio (Listing 5.20) where the MinIO

Python SDK is utilized, the MinIO client is initialized, and the model file is saved

to the model bucket following this template:

models/user-namespace/model-name/version/model-file

• The addition of a function called save_dir_to_minio (Listing 5.20) to store models in

MinIO that are stored to the model bucket following this template:

models/user-namespace/model-name/version/model-directory/model-files

• The deletion of the locally saved models after storing them in MinIO to preserve

memory.

• The retrievement of the model’s MinIO URI and the call to the serve_from_uri func-

tion to serve the model.

Listing 5.20: The functions developed to store and serve a ML model from Jupyter Notebooks

def serve(model: Any,

name: str,

version: str = "latest",

wait: bool = True,

predictor: str = None,

preprocessing_fn: Callable = None,
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preprocessing_assets: Dict = None) -> KFServer:

log.info("Starting serve procedure for model '%s'", model)

if not version:

log.info("No version provided, using 'latest'")

# Validate and process transformer

if preprocessing_fn:

_prepare_transformer_assets(preprocessing_fn,

preprocessing_assets)

# Detect predictor type

predictor_type = marshal.get_backend(model).predictor_type

if predictor and predictor != predictor_type:

raise RuntimeError("Trying to create an InferenceService with"

" predictor of type '%s' but the model is of type"

" '%s'" % (predictor, predictor_type))

if not predictor_type:

log.error("Kale does not yet support serving objects with '%s'"

" backend.\n\nPlease help us improve Kale by opening a

new"

" issue at:\n"

"https://github.com/kubeflow-kale/kale/issues",

marshal.get_backend(model).display_name)

utils.graceful_exit(-1)

predictor = predictor_type # in case `predictor` is None

# Dump the model

marshal.set_data_dir(PREDICTOR_MODEL_DIR)

model_filepath = marshal.save(model, "model")

model_filename = model_filepath.split('/')[-1]

# Save the model to minio bucket

minio_path = f"{podutils.get_namespace()}/{name}/{version}/{
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model_filename}"

model_uri = f"{MINIO_BUCKET}/{podutils.get_namespace()}/{name}/{

version}"

model_name = f"{name}-{version}"

if is_file(model_filepath):

save_file_to_minio(minio_path, model_filepath, model_uri)

else:

save_dir_to_minio(minio_path, model_filepath, model_uri)

model_parent_dir=minio_path.split('/')[3]

model_uri= f"{model_uri}/{model_parent_dir}"

return serve_from_uri(model_uri, predictor, model_name, wait,

preprocessing_fn, preprocessing_assets)

def save_file_to_minio(minio_path, model_filepath, model_uri):

minio_client = Minio('minio-service.kubeflow.svc.cluster.local:9000'

, access_key='*****', secret_key='****', secure=False)

try:

minio_client.fput_object(MINIO_BUCKET, minio_path, model_filepath

)

log.info("Model file saved successfully at {}".format(model_uri))

# delete the locally saved model file

os.remove(model_filepath)

except InvalidResponseError as err:

raise InvalidResponseError("Invalid response error {}".format(err

))

def save_dir_to_minio(minio_path, model_filepath, model_uri):
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for model_file in glob.glob(model_filepath + '/**'):

if os.path.isdir(model_file):

save_dir_to_minio(

minio_path + "/" + os.path.basename(model_file), model_file

, model_uri)

else:

remote_path = os.path.join(

minio_path, model_file[1 + len(model_filepath):])

save_file_to_minio(remote_path, model_file, model_uri)

As a result, the adjusted serve function operates as the entry point for serving models

developed in Jupyter Notebooks directly from the same workplace. The original utility

included in Kale provides the detection of the model’s predictor type. That is to say that

after the implemented modifications, the DnA users can serve their ML models just by

importing the serve function and passing a minimum set of information:

• the model object they want to serve

• the name of the InferenceService

• the version of the InferenceService

Additionally, users can specify extra parameters as seen in the function definition in

Listing 5.20.

The implemented features contribute to the enhancement of the Data user experi-

ence. The DnA platform’s MLOps solution offers three easy ways to serve a model:

1. Via the Models UI to serve a stored model by a simple yaml definition.

2. Via Jupyter notebooks to serve a stored model by a one-line function.

3. Via Jupyter notebooks to serve a developed model directly from the workspace

using a one-line function.

Finally, getting predictions from the served models is an easy process. It can be

achieved by simple POST requests in the model predict-URL provided by KServe. POST

requests can be performed either by a CLI or directly from the Jupyter Notebooks (Figure

5.12.
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Figure 5.12: Getting predictions with a simple POST request

In conclusion, KServe is a handy tool provided by the Kubeflow ecosystem to enable

serving models abstractly via the Models UI or the Python SDK. Nonetheless, the tool’s

installation in the secure enterprise environment couldn’t be accomplished without the

described modifications.

5.4 The Answer to the Research Question

In addition to the MLOPs lifecycle implementation, of equal importance for the current

thesis was the exploration task enterprise-readiness of existing FOSS solutions (Section

2.2). Undeniably, the sample of the open-source software used in this project was sig-

nificantly small. However, the Kubeflow ecosystem is a project that originates its initial

development to the Google team. Furthermore, it is a project that aims to constitute

the primary choice for organizations performing Data and Analytics operations. Despite

that fact, the hands-on experience gained by deploying the tools to the environment of

the Mercedes-Benz AG proved multiple times that the FOSS Kubeflow is not ready for

the enterprise world. More specifically, the installation process of every tool was not

straightforward at all and required, in most cases, challenging modifications. Most of the

project effort and time was spent on adjusting the numerous components, more than 30,

to secure versions. Software Security is probably the most crucial factor for organizations

around the world. Additionally, Security is one of the main aspects of the ISO/IEC 25010
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(2011) Software Quality Model, which is used to evaluate the quality of software (Figure

5.13). In this case, the conclusions extracted by the project lead to the deduction that the

quality of existing FOSS solutions, such as Kubeflow, is dramatically affected by the lack

of security design. Although ISO/IEC 25010 (2011) characteristics such as Performance

Efficiency can be found in many open source solutions, the lack of Security properties

such as Confidentiality or Integrity usually results in the ostracism of FOSS from the

enterprise environments.

Figure 5.13: The Software Product Quality Model (ISO/IEC 25010, 2011)





6 Evaluation

During the implementation process of the current project, several open-source ML note-

books were used to trial the system’s functionality. The utilization of such models was

indubitably necessary and enabled an efficient and effective way of spotting and elimi-

nating failures and bugs. Initially, the final form of the developed MLOps lifecycle was

successfully tested using the forenamed models. However, the solution validation within

the enterprise environment of Mercedes-Benz AG was realized utilizing an existing ML

model, Chronos. This chapter presents the automation of the Chronos model develop-

ment using the DnA platform and the designed MLOps framework and provides a com-

prehensive overview of the developed features.

6.1 The Chronos Use Case

The Chronos team within Mercedes-Benz AG is developing a time-series ML model to

enable forecasting predictions using data stamped on historical time. The publication of

its source code is not allowed since this is an internal company project. Nevertheless, the

developing team provided one of their core Notebooks with dummy data and configu-

ration files to validate the solution of the thesis. It is worth mentioning that the Chronos

model was developed in a licensed product environment, so the confirmation of the so-

lution functionally could initiate the process of moving the project into the open-source

space. The Chronos Notebook is a typical form of an ML notebook. It contains several

cells where different actions such as Imports, Data Reading, Exploratory Data Analysis,

Model Training, etc., are taking place (Figure 6.1).

The first step of the automation includes the conversion of the notebook into a KF
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Figure 6.1: A sample of the Chronos model

pipeline. That is accomplished by utilizing Kale. Users should enable the tool from the

Jupyter UI and annotate their notebooks. In this case, the Chronos notebook annotations

were based on the desired execution steps. In parallel to the annotation of the cells, the

dependencies between the different pipeline stages were declared (Figure 6.2).

Figure 6.2: Creating annotations for the different pipeline steps

Next, the pipeline was assigned to an experiment and named accordingly via the

Kale UI. The last step includes clicking the "Compile and Run" button to automatically

create the KF pipeline, upload it to KFP and run it (Figure 6.3). To conclude, these two
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simple steps enable users to move their Jupyter Notebooks in KFP without any further

technical knowledge required.

Figure 6.3: Compiling, uploading and running the generated KF pipeline

Figure 6.4 contains the result of the executed pipeline. One can already spot some

of the handful KFP features. The most important one includes the parallel execution of

independent pipeline steps (EDA and Model Training). This feature enables users to run

their KF pipelines faster and more efficiently.

Figure 6.4: The successfully executed Chronos KF pipeline

Figure 6.5 presents an example of cached execution. More specifically, the green



84 6.1 The Chronos Use Case

symbol in each step indicates that the particular stage was not executed. The results

are loaded from the cache server because the steps already ran in the past without any

change. That is a particularly convenient feature. Only the modified pipeline steps and

their interdependencies have to be re-executed again. Thus, time and resource costs are

highly impacted and get significantly reduced.

Figure 6.5: A caching example

The Central Dashboard UI provides several features. For instance, users can access

handy information about the execution and get beautiful visualizations by clicking on

individual pipeline steps (Figure 6.6).

Figure 6.6: A visualization example from a KFP step
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Additionally, Experiments enable efficiently organizing the different pipeline ver-

sions. Users can select multiple pipelines and compare them using metrics (Figure 6.7).

Figure 6.7: Comparing different KF pipeline versions

The next step of the MLOps lifecycle is the model serving. That can be achieved in

three different ways described in Chapter 5.3. However, serving time series forecasting

models is not a common practice. Nonetheless, a model server was developed for the

Chronos use case to demonstrate the feature of custom ML predictors. Usually, the pro-

cess of serving regular model types such as a TensorFlow or Pytorch solution within the

implemented MLOps pipeline requires only the declaration of the model, its name, and

its version. For the Chronos case, two extra parameters were essential: the statement of

the custom predictor type and the reference to the implemented model server. (Figure

6.8). The model is served effortlessly, just in one line of code. A hyperlink leads to the

Models UI in the Kubeflow environment.
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Figure 6.8: Serving a custom model from Jupyter Notebooks

Using the Models UI, users get an overview of their served models and access crucial

information about each one of them (Figure 6.9). Predictions, as described in Chapter 5.3,

can be made with a simple HTTP request.

Figure 6.9: The Models UI

Finally, it should be mentioned that several additional features are included in the

Central Dashboard UI. Users can trigger or schedule KF pipeline runs, access pipeline

artifacts, and more. One of the most crucial features enables users to provide access to

their namespace to others. That can be done straightforwardly via the Contributors tab

by simply declaring the user’s short id (Figure 6.10).
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Figure 6.10: Adding contributors

In conclusion, the implemented solution was successfully validated by the Chronos

model use case. The benefits of the designed MLOps lifecycle can enable cost, time, and

effort reductions. The result of this demonstration was the initiation of discussions and

plans for the future movement of the Chronos development to the open-source environ-

ment of the DnA platform. That fact confirms the practical value of the implemented

project and indicates the generic benefits of utilizing FOSS tools in enterprise environ-

ments.





7 Conclusions and Outlook

While AI and ML development are becoming the defacto standard in everyday enterprise

life, ML solutions are still struggling to find their way to production. A high percentage

of the developed within organizations ML systems is kept to laboratory environments

as quite often Data Scientists do not have the required technical skills to scale, deploy

and distribute their solutions. The outcome is the creation of technical debt, mostly be-

tween Data Scientists and Software engineers, and eventually, the increment in resources

costs for organizations. MLOps is a new and rapidly rising framework based on DevOps

principles and aims to tackle this challenge by automating the steps of creating machine

learning systems. In 2022 there are various MLOps tools, many of which are open-source

projects. The importance of the FOSS for the global development community is so vital

that nowadays, almost every organization is making use of open software. FOSS can

only benefit enterprises in many ways, such as enabling software development teams to

focus on the core product idea by utilizing open-source components instead of building

everything from scratch. In return, organizations using open software tend to contribute

back to FOSS communities by either enhancing the functionality of existing projects or

opening their products’ source code. Mercedes-Benz AG relies on open-source compo-

nents for many of its projects. One of the most important company’s internal projects in

the Data Science field, the Data and Analytics platform, constitutes the first significant

open-source contribution of Mercedes-Benz. Essentially, the DnA platform is a complete

solution in the Analytics area that utilizes open-source technologies to enable users to

access data, create, manage and share ML solutions conveniently and transparently.

The task of this thesis was to design, implement a complete MLOps lifecycle and

integrate it with the DnA platform, using existing open-source tools while in parallel
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investigating and documenting whether FOSS solutions are enterprise-ready. In particu-

lar, the main objective was to enable Data Scientists to transfer their ML solutions from

their working space, that is, Jupyter Notebooks, to ML pipelines in an as much as possible

effortless way. The first step to tackle the problem included the selection of existing open-

source solutions. Kubeflow, developed by Google, constitutes one of the most promising

FOSS ML toolkits. Consisting of many different tools, Kubeflow is essentially a Cloud-

Native framework designed to simplify the running process of ML workflows on top of

Kubernetes. For this project, only a fraction of Kubeflow modules were selected. The

most important of the components utilized are:

• Kubeflow Pipelines is a tool that enables automatically creating and executing scal-

able, portable, and ML workflows.

• Kale, an addon tool contributed by Arrikto, is a convenient extension that automat-

ically converts ML solutions written in Jupyter Notebooks to Kubeflow Pipelines in

a non-complex way.

• KServe is used to scalably serve and monitor, in an abstract way, ML models that

are based on popular or custom ML frameworks.

The deployment of the Kubeflow modules into the secure enterprise environment

of Mercedes-Benz was challenging and required plenty of modifications in the different

components. The main reason included the request for advanced privileges in the com-

pany cluster from most of the docker images used by the Kubeflow components. The

overwhelming majority of the tools’ modules had to be adjusted to remove the security

risks. This particular designed MLOps workflow includes more than 20 different parts.

As a result, a significant amount of time and effort was spent to set up the secure ver-

sions. The crucial modification included the application of security context settings that

would require the deployments to run docker images as non-root users. The fact that

most of the setup time, about four of the six project months, was required to convert

the tools into their secure versions produces concrete evidence about FOSS. Despite the

numerous benefits, open-source solutions often lack security design, and therefore they

cant be utilized in enterprise environments. While someone would expect that at least big

FOSS projects like Kubeflow from Google would be secure by default, it seems that this
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is not the case. Hence, maintainers and potential users end up with additional effort as

no root-requiring tool can exist in enterprises. That leads to the conclusion that there are

high chances that open-source solutions can very often end up due to their from scratch

lack of security design as a Proof of Concept projects, instead of being utilized in real-life

scenarios by organizations around the world.

However, the security adjustments led to establishing a modern and multi-user iso-

lated MLOps lifecycle that can practically benefit the users and organizations. Data Scien-

tists can develop their ML models in their already known environment of Jupyter Note-

books. From there, without hardly any advanced technical expertise, they can put their

solutions into Kubeflow Pipelines using the Jupyterlab extension, Kale, just by annotat-

ing their cells and clicking a button. Furthermore, they can serve their models in an

API form, using one-line commands directly from the notebook or the UI. With simple

POST requests, they can get predictions from their models’ servers via any CLI or even

directly from inside the Jupyter Notebooks. Finally, via the handy Central Dashboard

UI, authorized users can access their pipelines and their served models to perform a

set of different actions. For instance, they can schedule KFP runs, compare metrics be-

tween pipeline executions, add contributors to enable other users to access experiments,

and more. The solution was applied successfully to the real-life use case scenario of the

Chronos model. That acted as a validation of the initially planned objective. The technical

debt between Data Scientists and Software Engineers is eliminated. That is achieved via

a secure, open-source, multi-user isolated, deployable, and scalable MLOps lifecycle in a

transparent, configuration-free, and technical expertise-independent way. ML solutions

can now reach production in an easier than ever way.

The project of this thesis became a crucial component of Mercedes-Benz’s DnA plat-

form and was included in the Q2 2022 release, published in: https://github.com/

mercedes-benz/DnA/. On a personal note, I was honored to be part of the DnA plat-

form team in this critical Mercedes-Benz project. I hope that more and more worldwide

enterprises will follow this paradigm and will develop secure open-source solutions.

https://github.com/mercedes-benz/DnA/
https://github.com/mercedes-benz/DnA/
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7.1 Future Work

A bi-product of this thesis is the actual hands-on experience of the feature set that the

deployed tools and technologies offer. The designed MLOps lifecycle has succeeded in

being a sufficiently functional solution. However, several installed components require

further improvements to enforce efficient and safe workflow operation. In addition, the

overall functionality can be further expanded and optimized by developing or integrat-

ing new features into the existing architecture. The following is a list of future recom-

mendations:

1. Extend multi-user isolation to support access control for Pipeline definitions, Exe-

cutions, and MinIO artifact storage.

2. Enable the selection of work that can be shared contributors, such as specific exper-

iments, etc.

3. Enable granular contributor permissions to give specific permissions to particular

contributors.

4. Enable group Kubeflow profiles for teams working on projects.

5. Enable uploading files in the UI to adjust the execution parameters of pipeline runs.

6. Extend the UI by integrating a model registry, such as MinIO, to enable serving,

stored models with a click.

7. Enable notification service for KFP and KServe.

8. Upgrade Kale to support the newest JupyterLab version.

9. Enable users to create their custom Jupyter Notebooks environment to include spe-

cific library versions.

10. Integrate a data versioning tool such as the open-source DVC.

Finally, it should be pointed out again that FOSS solutions need to be secure to uti-

lize by organizations. Designing secure open-source software from scratch will enable

the faster and broader absorption of the projects and will reduce the additional effort of

discovering and fixing potential risks.
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Appendix A

1 Local Deployment Documentation

The local deployment of the single-user version of the designed MLOps lifecycle has

constituted the basis for the fulfillment of this project. While it is not an enterprise-ready

version, it provides sufficient data and an overview of how the final solution should look.

Using the following listings, one can:

• Deploy the JupyterHub along with Kale and get a similar to DnA Platform’s note-

books environment

• Deploy the Kubeflow Pipelines (single-user version) and get an overview of the

interaction between the Jupyter Notebooks and KFP

• Deploy KServe and get an overview of the interaction between Jupyter Notebooks,

KFP, and KServe

More information about this project can be found at its dedicated GitHub repository:

https://github.com/konsloiz/masters-thesis

1.1 JupyterHub & Kale

Listing 1: Single User Jupyter Notebook & Kale Dockerfile

ARG IMAGE_TYPE="cpu"

FROM jupyter/pyspark-notebook:ubuntu-18.04

USER root

105
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# Install basic dependencies

RUN apt-get update && \

apt-get install -y --no-install-recommends \

ca-certificates bash-completion tar less \

python-pip python-setuptools build-essential python-dev \

python3-pip python3-wheel && \

rm -rf /var/lib/apt/lists/*

RUN apt-get install -y git

#RUN pip3 install jupyterlab-gitlab==2.0.0

# Install latest KFP SDK

RUN pip3 freeze

RUN pip3 install --upgrade pip && \

# XXX: Install enum34==1.1.8 because other versions lead to errors

during

# KFP installation

pip3 install --upgrade "enum34==1.1.8" && \

pip3 install jupyterlab-gitlab==2.0.0 && \

pip3 install --upgrade "jupyterlab>=2.0.0,<3.0.0"

#Install libraries for the demo

RUN pip3 install --upgrade pip && \

pip3 install pillow==7.2.0 && \

pip3 install tensorflow==2.3.0 && \

pip3 install matplotlib==3.3.1 && \

pip3 install torch &&\

pip3 install torchvision

# Install Kale from KALE_BRANCH (defaults to "master")

ARG KALE_BRANCH="master"

WORKDIR /

RUN git config --global http.sslverify false

RUN git clone -b ${KALE_BRANCH} https://github.com/kubeflow-kale/kale
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WORKDIR /kale/backend

RUN pip3 install --upgrade .

WORKDIR /kale/labextension

RUN npm config set strict-ssl false && \

npm install --global yarn && \

yarn config set "strict-ssl" false && \

jlpm install && \

jlpm run build && \

jupyter labextension install .

RUN jupyter labextension install @jupyterlab/git

RUN pip3 install jupyterlab-git==0.24.0

RUN pip install nbgitpuller

RUN jupyter lab build

USER ${NB_UID}

WORKDIR "${HOME}"

Listing 2: JupyterHub Helm Chart Config

proxy:

secretToken: #enter your token here

singleuser:

image:

name: # enter the image name here

tag: latest

defaultUrl: "/lab"

extraEnv:

KF_PIPELINES_ENDPOINT: http://ml-pipeline-ui.kubeflow:80

#KUBECONFIG: /tmp/config

hub:

extraConfig:

ipaddress: |

import os

c.KubeSpawner.service_account = "hub"
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Listing 3: JupyterHub & Kale Deployment

helm install jupyter jupyterhub/jupyterhub --version=v0.11.0 -f config.

yaml -n kubeflow --timeout 180s

kubectl port-forward -n kubeflow svc/proxy-public 8888:80

1.2 Kubeflow Pipelines - Single User Version

Listing 4: Kubeflow Pipelines Deployment

kubectl apply -k github.com/kubeflow/pipelines/manifests/kustomize/

cluster-scoped-resources?ref=1.7.0

kubectl wait --for condition=established --timeout=60s crd/applications

.app.k8s.io

kubectl apply -k github.com/kubeflow/pipelines/manifests/kustomize/env/

dev?ref=1.7.0

kubectl port-forward -n kubeflow svc/ml-pipeline-ui 3000:80

1.3 KServe

Listing 5: KServe Deployment

curl -s "https://raw.githubusercontent.com/kserve/kserve/release-0.7/

hack/quick_install.sh" | bash

kubectl delete -f https://github.com/kserve/kserve/releases/download/v0

.7.0/kserve.yaml

kubectl apply -f https://github.com/kubeflow/kfserving/releases/

download/v0.6.0/kfserving.yaml

# set the following ENV vars in the app's Deployment

kubectl edit -n kfserving-system deployments.apps kfserving-models-web-
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app

# APP_PREFIX: /

# APP_DISABLE_AUTH: "True"

# APP_SECURE_COOKIES: "False"

# expose the app under localhost:5000

kubectl port-forward -n kfserving-system svc/kfserving-models-web-app

5000:80

# authorize network access to deployment

kubectl port-forward svc/istio-ingressgateway -n istio-system 8080:80
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