-
Notifications
You must be signed in to change notification settings - Fork 10
Project: engine
Please check the sm-engine-ansible project
The main implementation of the METASPACE engine uses Lithops to run code in Serverless Cloud Functions. See Lithops.md for setup instructions.
Please visit the help page of our web application running on AWS:
There are two modules of pytest tests:
-
sm.engine.tests
- unit tests that don't involve the DB, etc. -
tests
- integration tests
It's recommended to use the -vv -n auto
command line options when calling pytest to get sufficient debug information
and utilize all available CPU cores.
Additionally, there is a "Scientific test" that processes an entire dataset and compares the result against reference results. It can be run on both the Lithops and Spark (default) pipelines:
python tests/sci_test/spheroid.py -r --mock-image-storage --lithops --config=conf/scitest_config.json
python tests/sci_test/spheroid.py -r --mock-image-storage --config=conf/scitest_config.json
NOTE: the Spark pipeline intermittently fails due to a bug in segment generation. This is a known issue that won't be fixed due to deprecation of the Spark pipeline. It manifests as a single item appearing in the "DIFFERENCES IN METRICS" output. The underlying bug is that when reconstructing ion images, if the last image for an annotation spans multiple dataset segments, only the peaks from the first segment will be used. This causes that annotation's score to drop. As segmentation is based on a random sampling of spectra, the segment boundaries change every run, so it only happens in some runs.
Install CircleCI CLI tool and run circleci build
from the project root.