-
Notifications
You must be signed in to change notification settings - Fork 152
/
_AIMA-4x3-gridworld.qmd
464 lines (350 loc) · 11 KB
/
_AIMA-4x3-gridworld.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# The 4x3 Grid World Example
The used example is the simple 4x3 grid world
described in AIMA Figure 12.1 and used again in 22.1 as:
![AIMA Figure 17.1: (a) A simple, stochastic $4 \times 3$ environment that presents the
agent with a sequential decision problem. (b) Illustration of the
transition model of the environment: the "intended" outcome occurs with
probability 0.8, but with probability 0.2 the agent moves at right
angles to the intended direction. A collision with a wall results in no
movement. Transitions into the two terminal states have reward +1 and
-1, respectively, and all other transitions have a reward of -0.04.](figures/AIMA_Figure_17_1.png)
In the following, we implement states, actions, the reward function,and the
transition model. We also show how to represent a policy and how to
estimate the expected utility using simulation.
The MDP will be defined as the following global variables/functions:
* `S`: set of states.
* `A`: set of actions.
* `actions(s)`: returns the available actions for state $s$.
* `P(sp, s, a)`: a function returning the transition probability $P(s' | s, a)$.
* `R(s, a, s_prime)`: reward function for the transition from $s$ to $s`$ with
action `a`.
Policies are represented as:
* Deterministic policies are a vector with the action for each state.
* Stochastic policies are a matrix with probabilities where each row is a
state and the columns are the actions
Other useful functions:
* `sample_transition(s, a)`: returns a $s'$ sampled using the transition model.
* `simulate_utilities(pi, s0 = 1, N = 1000, max_t = 100)`: Estimates the
utility of following policy $\pi$, starting $N$ episodes in state $s_0$.
The maximal episode length is `max_t` to ensure that the function finishes
also for policies that do not lead to a terminal state.
## States
We define the atomic state space $S$ by labeling the states $1, 2, ...$.
We convert coordinates `(rows, columns)` to the state label.
```{r}
# I use capitalized variables as global constants
COLS <- 4
ROWS <- 3
S = seq_len(ROWS * COLS)
LAYOUT <- matrix(S, nrow = ROWS , ncol = COLS)
LAYOUT
```
Note that the rows are displayed upside-down compared to the text book,
so we use a function to display them in reverse order.
```{r}
show_layout <- function(x) {
x <- matrix(x, ncol = COLS, nrow = ROWS,
dimnames = list(row = seq_len(ROWS), col = seq_len(COLS)))
x[rev(seq_len(ROWS)), ]
}
show_layout(LAYOUT)
```
Convert between coordinates and state labels.
```{r}
rc_to_s <- function(rc)
LAYOUT[rbind(rc)]
s_to_rc <-
function(s)
drop(which(LAYOUT == s, arr.ind = TRUE, useNames = FALSE))
rc_to_s(c(3, 4))
s_to_rc(12)
```
Start state
```{r}
start <- 1L
```
Define terminal states.
```{r}
is_terminal <- function(s) s %in% c(5, 11, 12)
```
## Actions
The complete set of actions is
$A = \{\mathrm{'Up', 'Right', 'Down', 'Left', 'None'}\}$. Not all
actions are available in every state. Also, action `None` is added as
the only possible action in an absorbing state.
```{r}
A = c('Up', 'Right', 'Down', 'Left', 'None')
actions <- function(s) {
# absorbing states
if(s == 11 || s == 12) return('None')
# illegal state
if(s == 5) return('None')
c('Up', 'Right', 'Down', 'Left')
}
lapply(S, actions)
```
## Transition Model
$P(s' | s, a)$ is the probability of going from state $s$ to $s'$ by
when taking action $a$. We will create a matrix $P_a(s' | s)$ for each
action.
```{r}
calc_transition <- function(s, action) {
action <- match.arg(action, choices = A)
if(length(s) > 1) return(t(sapply(s, calc_transition, action = action)))
# deal with absorbing and illegal state
if(s == 11 || s == 12 || s == 5 || action == 'None') {
P <- rep(0, length(S))
P[s] <- 1
return(P)
}
action_to_delta <- list(
'Up' = c(+1, 0),
'Down' = c(-1, 0),
'Right' = c(0, +1),
'Left' = c(0, -1)
)
delta <- action_to_delta[[action]]
dr <- delta[1]
dc <- delta[2]
rc <- s_to_rc(s)
r <- rc[1]
c <- rc[2]
if(dr != 0 && dc != 0)
stop("You can only go up/down or right/left!")
P <- matrix(0, nrow = ROWS, ncol = COLS)
# UP/DOWN
if(dr != 0) {
new_r <- r + dr
if(new_r > ROWS || new_r < 1) new_r <- r
## can't got to (2, 2)
if(new_r == 2 && c == 2) new_r <- r
P[new_r, c] <- .8
if(c < COLS & !(r == 2 & (c + 1) == 2))
P[r, c + 1] <- .1 else P[r, c] <- P[r, c] + .1
if(c > 1 & !(r == 2 & (c - 1) == 2))
P[r, c - 1] <- .1 else P[r, c] <- P[r, c] + .1
}
# RIGHT/LEFT
if(dc != 0) {
new_c <- c + dc
if(new_c > COLS || new_c < 1) new_c <- c
## can't got to (2, 2)
if(r == 2 && new_c == 2) new_c <- c
P[r, new_c] <- .8
if(r < ROWS & !((r + 1) == 2 & c == 2))
P[r + 1, c] <- .1 else P[r, c] <- P[r, c] + .1
if(r > 1 & !((r - 1) == 2 & c == 2))
P[r - 1, c] <- .1 else P[r, c] <- P[r, c] + .1
}
as.vector(P)
}
```
Try to go up from state 1 (this is (1,1), the bottom left corner).
Note: we cannot go left so there is a .1 chance to stay in place.
```{r}
calc_transition(1, 'Up')
show_layout(calc_transition(1, 'Up'))
```
Try to go right from (2,1). Since right is blocked, there is a .8 probability of staying in place.
```{r}
show_layout(calc_transition(2, 'Right'))
```
Calculate transitions for each state to each other state. Each row
represents a state $s$ and each column a state $s'$ so we get a complete
definition for $P_a(s' | s)$. Note that the matrix is stochastic (all
rows add up to 1).
Create a matrix for each action.
```{r}
P_matrices <- lapply(A, FUN = function(a) calc_transition(S, a))
names(P_matrices) <- A
str(P_matrices)
```
Create a function interface for $P(s' | s, a)$.
```{r}
P <- function(sp, s, a) P_matrices[[a]][s, sp]
P(2, 1, 'Up')
P(5, 4, 'Up')
```
## Reward
$R(s, a, s')$ define the reward for the transition from $s$ to $s'$ with
action $a$.
For the textbook example we have:
- Any move costs utility (a reward of -0.04).
- Going to state 12 has a reward of +1
- Going to state 11 has a reward of -1.
Note that once you are in an absorbing state (11 or 12), then the
problem is over and there is no more reward!
```{r}
R <- function(s, a, s_prime) {
## no more reward when we in 11 or 12.
if(a == 'None' || s == 11 || s == 12) return(0)
## transition to the absorbing states.
if(s_prime == 12) return(+1)
if(s_prime == 11) return(-1)
## cost for each move
return(-0.04)
}
R(1, 'Up', 2)
R(9, 'Right', 12)
R(12, 'None', 12)
```
## Policy
The solution to an MDP is a policy $\pi$ which defines which action
to take in each state. We represent deterministic policies as a vector of
actions.
I make up a policy that always goes up and then to the right once the
agent hits the top.
```{r}
pi_manual <- rep('Up', times = length(S))
pi_manual[c(3, 6, 9)] <- 'Right'
pi_manual
show_layout(pi_manual)
```
We can also create a random policy by randomly choosing from the
available actions for each state.
```{r}
create_random_deterministic_policy <-
function()
structure(sapply(
S,
FUN = function(s)
sample(actions(s), 1L)
), names = S)
set.seed(1234)
pi_random <- create_random_deterministic_policy()
pi_random
show_layout(pi_random)
```
Stochastic policies use probabilities of actions in each state. We use
as simple table with probabilities where each row is a state and the columns
are the actions. Here we create a random $\epsilon$-soft policy. Each available has
at least a probability of $\epsilon$.
We can make a deterministic policy soft.
```{r}
make_policy_soft <-
function(pi, epsilon = 0.1) {
if(!is.vector(pi))
stop("pi is not a deterministic policy!")
p <-
matrix(0,
nrow = length(S),
ncol = length(A),
dimnames = list(S, A))
for (s in S) {
p[s, actions(s)] <- epsilon / length(actions(s))
p[s, pi[s]] <- p[s, pi[s]] + (1 - epsilon)
}
p
}
make_policy_soft(pi_random)
```
Or we can create a completely random soft policy
```{r}
create_random_epsilon_soft_policy <-
function(epsilon = 0.1) {
# split total randomly into n numbers that add up to total
random_split <- function(n, total) {
if (n == 1)
return(total)
bordersR <- c(sort(runif(n - 1)), 1)
bordersL <- c(0, bordersR[1:(n - 1)])
(bordersR - bordersL) * total
}
p <-
matrix(0,
nrow = length(S),
ncol = length(A),
dimnames = list(S, A))
for (s in S)
p[s, actions(s)] <- epsilon / length(actions(s)) +
random_split(n = length(actions(s)), 1 - epsilon)
p
}
set.seed(1234)
pi_random_epsilon_soft <- create_random_epsilon_soft_policy()
pi_random_epsilon_soft
```
## Expected Utility
The expected utility can be calculated by
$U^\pi = E\left[\sum_{t=0}^\infty \gamma^t R(s_t, \pi(s_t), s_{t+1})\right]$
We need to define the discount factor.
```{r}
GAMMA <- 1
```
We can evaluate the utility of a policy using simulation. For the
stochastic transition model, we need to be able
to sample the state $s'$ the system transitions to
when using action $a$ in state $s$.
```{r}
sample_transition <- function(s, a)
sample(S, size = 1, prob = P_matrices[[a]][s,])
sample_transition(1, 'Up')
table(replicate(n = 100, sample_transition(1, 'Up')))
```
We can now simulate the utility for one episode. Note that we use the cutoff
`max_t` in case a policy does not end up in a terminal state before that.
```{r}
simulate_utility <- function(pi, s0 = 1, max_t = 100) {
s <- s0
U <- 0
t <- 0
while (TRUE) {
## get action from policy (matrix means it is a stochastic policy)
if (!is.matrix(pi))
a <- pi[s]
else
a <- sample(A, size = 1, prob = pi[s, ])
## sample a transition given the action from the policy
s_prime <- sample_transition(s, a)
##
U <- U + GAMMA ^ t * R(s, a, s_prime)
s <- s_prime
## reached an absorbing state?
if (s == 11 || s == 12 || s == 5)
break
t <- t + 1
if (t >= max_t)
break
}
U
}
```
Simulate the `N` episodes.
```{r}
simulate_utilities <- function(pi, s0 = 1, N = 1000, max_t = 100)
replicate(N, simulate_utility(pi, s0, max_t))
utility_manual <- simulate_utilities(pi_manual)
```
The expected utility for starting from state $s_0 = 1$ is.
```{r}
mean(utility_manual)
hist(utility_manual, xlim = c(-1, 1))
```
Compare with the utility of the random policy.
```{r}
utility_random <- simulate_utilities(pi_random, max_t = 100)
table(utility_random)
```
The random policy performs really bad and most likely always
stumbles around for `max_t` moves at a cost of .04 each.
The manually created policy is obviously better.
We can use simulation to estimate the expected utility for starting from
each state following the policy.
```{r}
U_manual <-
sapply(
S,
FUN = function(s)
mean(simulate_utilities(pi_manual, s0 = s))
)
show_layout(U_manual)
```
```{r}
U_random <-
sapply(
S,
FUN = function(s)
mean(simulate_utilities(pi_random, s0 = s))
)
show_layout(U_random)
```