-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
gbdt.cpp
841 lines (772 loc) · 31.5 KB
/
gbdt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
/*!
* Copyright (c) 2016 Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the project root for license information.
*/
#include "gbdt.h"
#include <LightGBM/metric.h>
#include <LightGBM/network.h>
#include <LightGBM/objective_function.h>
#include <LightGBM/prediction_early_stop.h>
#include <LightGBM/utils/common.h>
#include <LightGBM/utils/openmp_wrapper.h>
#include <chrono>
#include <ctime>
#include <sstream>
namespace LightGBM {
Common::Timer global_timer;
int LGBM_config_::current_device = lgbm_device_cpu;
int LGBM_config_::current_learner = use_cpu_learner;
GBDT::GBDT()
: iter_(0),
train_data_(nullptr),
config_(nullptr),
objective_function_(nullptr),
early_stopping_round_(0),
es_first_metric_only_(false),
max_feature_idx_(0),
num_tree_per_iteration_(1),
num_class_(1),
num_iteration_for_pred_(0),
shrinkage_rate_(0.1f),
num_init_iteration_(0),
need_re_bagging_(false),
balanced_bagging_(false),
bagging_runner_(0, bagging_rand_block_) {
average_output_ = false;
tree_learner_ = nullptr;
linear_tree_ = false;
}
GBDT::~GBDT() {
}
void GBDT::Init(const Config* config, const Dataset* train_data, const ObjectiveFunction* objective_function,
const std::vector<const Metric*>& training_metrics) {
CHECK_NOTNULL(train_data);
train_data_ = train_data;
if (!config->monotone_constraints.empty()) {
CHECK_EQ(static_cast<size_t>(train_data_->num_total_features()), config->monotone_constraints.size());
}
if (!config->feature_contri.empty()) {
CHECK_EQ(static_cast<size_t>(train_data_->num_total_features()), config->feature_contri.size());
}
iter_ = 0;
num_iteration_for_pred_ = 0;
max_feature_idx_ = 0;
num_class_ = config->num_class;
config_ = std::unique_ptr<Config>(new Config(*config));
early_stopping_round_ = config_->early_stopping_round;
es_first_metric_only_ = config_->first_metric_only;
shrinkage_rate_ = config_->learning_rate;
if (config_->device_type == std::string("cuda")) {
LGBM_config_::current_learner = use_cuda_learner;
}
// load forced_splits file
if (!config->forcedsplits_filename.empty()) {
std::ifstream forced_splits_file(config->forcedsplits_filename.c_str());
std::stringstream buffer;
buffer << forced_splits_file.rdbuf();
std::string err;
forced_splits_json_ = Json::parse(buffer.str(), &err);
}
objective_function_ = objective_function;
num_tree_per_iteration_ = num_class_;
if (objective_function_ != nullptr) {
num_tree_per_iteration_ = objective_function_->NumModelPerIteration();
if (objective_function_->IsRenewTreeOutput() && !config->monotone_constraints.empty()) {
Log::Fatal("Cannot use ``monotone_constraints`` in %s objective, please disable it.", objective_function_->GetName());
}
}
is_constant_hessian_ = GetIsConstHessian(objective_function);
tree_learner_ = std::unique_ptr<TreeLearner>(TreeLearner::CreateTreeLearner(config_->tree_learner, config_->device_type,
config_.get()));
// init tree learner
tree_learner_->Init(train_data_, is_constant_hessian_);
tree_learner_->SetForcedSplit(&forced_splits_json_);
// push training metrics
training_metrics_.clear();
for (const auto& metric : training_metrics) {
training_metrics_.push_back(metric);
}
training_metrics_.shrink_to_fit();
train_score_updater_.reset(new ScoreUpdater(train_data_, num_tree_per_iteration_));
num_data_ = train_data_->num_data();
// create buffer for gradients and Hessians
if (objective_function_ != nullptr) {
size_t total_size = static_cast<size_t>(num_data_) * num_tree_per_iteration_;
gradients_.resize(total_size);
hessians_.resize(total_size);
}
// get max feature index
max_feature_idx_ = train_data_->num_total_features() - 1;
// get label index
label_idx_ = train_data_->label_idx();
// get feature names
feature_names_ = train_data_->feature_names();
feature_infos_ = train_data_->feature_infos();
monotone_constraints_ = config->monotone_constraints;
// get parser config file content
parser_config_str_ = train_data_->parser_config_str();
// if need bagging, create buffer
ResetBaggingConfig(config_.get(), true);
class_need_train_ = std::vector<bool>(num_tree_per_iteration_, true);
if (objective_function_ != nullptr && objective_function_->SkipEmptyClass()) {
CHECK_EQ(num_tree_per_iteration_, num_class_);
for (int i = 0; i < num_class_; ++i) {
class_need_train_[i] = objective_function_->ClassNeedTrain(i);
}
}
if (config_->linear_tree) {
linear_tree_ = true;
}
}
void GBDT::AddValidDataset(const Dataset* valid_data,
const std::vector<const Metric*>& valid_metrics) {
if (!train_data_->CheckAlign(*valid_data)) {
Log::Fatal("Cannot add validation data, since it has different bin mappers with training data");
}
// for a validation dataset, we need its score and metric
auto new_score_updater = std::unique_ptr<ScoreUpdater>(new ScoreUpdater(valid_data, num_tree_per_iteration_));
// update score
for (int i = 0; i < iter_; ++i) {
for (int cur_tree_id = 0; cur_tree_id < num_tree_per_iteration_; ++cur_tree_id) {
auto curr_tree = (i + num_init_iteration_) * num_tree_per_iteration_ + cur_tree_id;
new_score_updater->AddScore(models_[curr_tree].get(), cur_tree_id);
}
}
valid_score_updater_.push_back(std::move(new_score_updater));
valid_metrics_.emplace_back();
for (const auto& metric : valid_metrics) {
valid_metrics_.back().push_back(metric);
}
valid_metrics_.back().shrink_to_fit();
if (early_stopping_round_ > 0) {
auto num_metrics = valid_metrics.size();
if (es_first_metric_only_) { num_metrics = 1; }
best_iter_.emplace_back(num_metrics, 0);
best_score_.emplace_back(num_metrics, kMinScore);
best_msg_.emplace_back(num_metrics);
}
}
void GBDT::Boosting() {
Common::FunctionTimer fun_timer("GBDT::Boosting", global_timer);
if (objective_function_ == nullptr) {
Log::Fatal("No object function provided");
}
// objective function will calculate gradients and hessians
int64_t num_score = 0;
objective_function_->
GetGradients(GetTrainingScore(&num_score), gradients_.data(), hessians_.data());
}
data_size_t GBDT::BaggingHelper(data_size_t start, data_size_t cnt, data_size_t* buffer) {
if (cnt <= 0) {
return 0;
}
data_size_t cur_left_cnt = 0;
data_size_t cur_right_pos = cnt;
// random bagging, minimal unit is one record
for (data_size_t i = 0; i < cnt; ++i) {
auto cur_idx = start + i;
if (bagging_rands_[cur_idx / bagging_rand_block_].NextFloat() < config_->bagging_fraction) {
buffer[cur_left_cnt++] = cur_idx;
} else {
buffer[--cur_right_pos] = cur_idx;
}
}
return cur_left_cnt;
}
data_size_t GBDT::BalancedBaggingHelper(data_size_t start, data_size_t cnt,
data_size_t* buffer) {
if (cnt <= 0) {
return 0;
}
auto label_ptr = train_data_->metadata().label();
data_size_t cur_left_cnt = 0;
data_size_t cur_right_pos = cnt;
// random bagging, minimal unit is one record
for (data_size_t i = 0; i < cnt; ++i) {
auto cur_idx = start + i;
bool is_pos = label_ptr[start + i] > 0;
bool is_in_bag = false;
if (is_pos) {
is_in_bag = bagging_rands_[cur_idx / bagging_rand_block_].NextFloat() <
config_->pos_bagging_fraction;
} else {
is_in_bag = bagging_rands_[cur_idx / bagging_rand_block_].NextFloat() <
config_->neg_bagging_fraction;
}
if (is_in_bag) {
buffer[cur_left_cnt++] = cur_idx;
} else {
buffer[--cur_right_pos] = cur_idx;
}
}
return cur_left_cnt;
}
void GBDT::Bagging(int iter) {
Common::FunctionTimer fun_timer("GBDT::Bagging", global_timer);
// if need bagging
if ((bag_data_cnt_ < num_data_ && iter % config_->bagging_freq == 0) ||
need_re_bagging_) {
need_re_bagging_ = false;
auto left_cnt = bagging_runner_.Run<true>(
num_data_,
[=](int, data_size_t cur_start, data_size_t cur_cnt, data_size_t* left,
data_size_t*) {
data_size_t cur_left_count = 0;
if (balanced_bagging_) {
cur_left_count =
BalancedBaggingHelper(cur_start, cur_cnt, left);
} else {
cur_left_count = BaggingHelper(cur_start, cur_cnt, left);
}
return cur_left_count;
},
bag_data_indices_.data());
bag_data_cnt_ = left_cnt;
Log::Debug("Re-bagging, using %d data to train", bag_data_cnt_);
// set bagging data to tree learner
if (!is_use_subset_) {
tree_learner_->SetBaggingData(nullptr, bag_data_indices_.data(), bag_data_cnt_);
} else {
// get subset
tmp_subset_->ReSize(bag_data_cnt_);
tmp_subset_->CopySubrow(train_data_, bag_data_indices_.data(),
bag_data_cnt_, false);
tree_learner_->SetBaggingData(tmp_subset_.get(), bag_data_indices_.data(),
bag_data_cnt_);
}
}
}
void GBDT::Train(int snapshot_freq, const std::string& model_output_path) {
Common::FunctionTimer fun_timer("GBDT::Train", global_timer);
bool is_finished = false;
auto start_time = std::chrono::steady_clock::now();
for (int iter = 0; iter < config_->num_iterations && !is_finished; ++iter) {
is_finished = TrainOneIter(nullptr, nullptr);
if (!is_finished) {
is_finished = EvalAndCheckEarlyStopping();
}
auto end_time = std::chrono::steady_clock::now();
// output used time per iteration
Log::Info("%f seconds elapsed, finished iteration %d", std::chrono::duration<double,
std::milli>(end_time - start_time) * 1e-3, iter + 1);
if (snapshot_freq > 0
&& (iter + 1) % snapshot_freq == 0) {
std::string snapshot_out = model_output_path + ".snapshot_iter_" + std::to_string(iter + 1);
SaveModelToFile(0, -1, config_->saved_feature_importance_type, snapshot_out.c_str());
}
}
}
void GBDT::RefitTree(const std::vector<std::vector<int>>& tree_leaf_prediction) {
CHECK_GT(tree_leaf_prediction.size(), 0);
CHECK_EQ(static_cast<size_t>(num_data_), tree_leaf_prediction.size());
CHECK_EQ(static_cast<size_t>(models_.size()), tree_leaf_prediction[0].size());
int num_iterations = static_cast<int>(models_.size() / num_tree_per_iteration_);
std::vector<int> leaf_pred(num_data_);
if (linear_tree_) {
std::vector<int> max_leaves_by_thread = std::vector<int>(OMP_NUM_THREADS(), 0);
#pragma omp parallel for schedule(static)
for (int i = 0; i < static_cast<int>(tree_leaf_prediction.size()); ++i) {
int tid = omp_get_thread_num();
for (size_t j = 0; j < tree_leaf_prediction[i].size(); ++j) {
max_leaves_by_thread[tid] = std::max(max_leaves_by_thread[tid], tree_leaf_prediction[i][j]);
}
}
int max_leaves = *std::max_element(max_leaves_by_thread.begin(), max_leaves_by_thread.end());
max_leaves += 1;
tree_learner_->InitLinear(train_data_, max_leaves);
}
for (int iter = 0; iter < num_iterations; ++iter) {
Boosting();
for (int tree_id = 0; tree_id < num_tree_per_iteration_; ++tree_id) {
int model_index = iter * num_tree_per_iteration_ + tree_id;
#pragma omp parallel for schedule(static)
for (int i = 0; i < num_data_; ++i) {
leaf_pred[i] = tree_leaf_prediction[i][model_index];
CHECK_LT(leaf_pred[i], models_[model_index]->num_leaves());
}
size_t offset = static_cast<size_t>(tree_id) * num_data_;
auto grad = gradients_.data() + offset;
auto hess = hessians_.data() + offset;
auto new_tree = tree_learner_->FitByExistingTree(models_[model_index].get(), leaf_pred, grad, hess);
train_score_updater_->AddScore(tree_learner_.get(), new_tree, tree_id);
models_[model_index].reset(new_tree);
}
}
}
/* If the custom "average" is implemented it will be used in place of the label average (if enabled)
*
* An improvement to this is to have options to explicitly choose
* (i) standard average
* (ii) custom average if available
* (iii) any user defined scalar bias (e.g. using a new option "init_score" that overrides (i) and (ii) )
*
* (i) and (ii) could be selected as say "auto_init_score" = 0 or 1 etc..
*
*/
double ObtainAutomaticInitialScore(const ObjectiveFunction* fobj, int class_id) {
double init_score = 0.0;
if (fobj != nullptr) {
init_score = fobj->BoostFromScore(class_id);
}
if (Network::num_machines() > 1) {
init_score = Network::GlobalSyncUpByMean(init_score);
}
return init_score;
}
double GBDT::BoostFromAverage(int class_id, bool update_scorer) {
Common::FunctionTimer fun_timer("GBDT::BoostFromAverage", global_timer);
// boosting from average label; or customized "average" if implemented for the current objective
if (models_.empty() && !train_score_updater_->has_init_score() && objective_function_ != nullptr) {
if (config_->boost_from_average || (train_data_ != nullptr && train_data_->num_features() == 0)) {
double init_score = ObtainAutomaticInitialScore(objective_function_, class_id);
if (std::fabs(init_score) > kEpsilon) {
if (update_scorer) {
train_score_updater_->AddScore(init_score, class_id);
for (auto& score_updater : valid_score_updater_) {
score_updater->AddScore(init_score, class_id);
}
}
Log::Info("Start training from score %lf", init_score);
return init_score;
}
} else if (std::string(objective_function_->GetName()) == std::string("regression_l1")
|| std::string(objective_function_->GetName()) == std::string("quantile")
|| std::string(objective_function_->GetName()) == std::string("mape")) {
Log::Warning("Disabling boost_from_average in %s may cause the slow convergence", objective_function_->GetName());
}
}
return 0.0f;
}
bool GBDT::TrainOneIter(const score_t* gradients, const score_t* hessians) {
Common::FunctionTimer fun_timer("GBDT::TrainOneIter", global_timer);
std::vector<double> init_scores(num_tree_per_iteration_, 0.0);
// boosting first
if (gradients == nullptr || hessians == nullptr) {
for (int cur_tree_id = 0; cur_tree_id < num_tree_per_iteration_; ++cur_tree_id) {
init_scores[cur_tree_id] = BoostFromAverage(cur_tree_id, true);
}
Boosting();
gradients = gradients_.data();
hessians = hessians_.data();
}
// bagging logic
Bagging(iter_);
bool should_continue = false;
for (int cur_tree_id = 0; cur_tree_id < num_tree_per_iteration_; ++cur_tree_id) {
const size_t offset = static_cast<size_t>(cur_tree_id) * num_data_;
std::unique_ptr<Tree> new_tree(new Tree(2, false, false));
if (class_need_train_[cur_tree_id] && train_data_->num_features() > 0) {
auto grad = gradients + offset;
auto hess = hessians + offset;
// need to copy gradients for bagging subset.
if (is_use_subset_ && bag_data_cnt_ < num_data_) {
for (int i = 0; i < bag_data_cnt_; ++i) {
gradients_[offset + i] = grad[bag_data_indices_[i]];
hessians_[offset + i] = hess[bag_data_indices_[i]];
}
grad = gradients_.data() + offset;
hess = hessians_.data() + offset;
}
bool is_first_tree = models_.size() < static_cast<size_t>(num_tree_per_iteration_);
new_tree.reset(tree_learner_->Train(grad, hess, is_first_tree));
}
if (new_tree->num_leaves() > 1) {
should_continue = true;
auto score_ptr = train_score_updater_->score() + offset;
auto residual_getter = [score_ptr](const label_t* label, int i) {return static_cast<double>(label[i]) - score_ptr[i]; };
tree_learner_->RenewTreeOutput(new_tree.get(), objective_function_, residual_getter,
num_data_, bag_data_indices_.data(), bag_data_cnt_);
// shrinkage by learning rate
new_tree->Shrinkage(shrinkage_rate_);
// update score
UpdateScore(new_tree.get(), cur_tree_id);
if (std::fabs(init_scores[cur_tree_id]) > kEpsilon) {
new_tree->AddBias(init_scores[cur_tree_id]);
}
} else {
// only add default score one-time
if (models_.size() < static_cast<size_t>(num_tree_per_iteration_)) {
double output = 0.0;
if (!class_need_train_[cur_tree_id]) {
if (objective_function_ != nullptr) {
output = objective_function_->BoostFromScore(cur_tree_id);
}
} else {
output = init_scores[cur_tree_id];
}
new_tree->AsConstantTree(output);
// updates scores
train_score_updater_->AddScore(output, cur_tree_id);
for (auto& score_updater : valid_score_updater_) {
score_updater->AddScore(output, cur_tree_id);
}
}
}
// add model
models_.push_back(std::move(new_tree));
}
if (!should_continue) {
Log::Warning("Stopped training because there are no more leaves that meet the split requirements");
if (models_.size() > static_cast<size_t>(num_tree_per_iteration_)) {
for (int cur_tree_id = 0; cur_tree_id < num_tree_per_iteration_; ++cur_tree_id) {
models_.pop_back();
}
}
return true;
}
++iter_;
return false;
}
void GBDT::RollbackOneIter() {
if (iter_ <= 0) { return; }
// reset score
for (int cur_tree_id = 0; cur_tree_id < num_tree_per_iteration_; ++cur_tree_id) {
auto curr_tree = models_.size() - num_tree_per_iteration_ + cur_tree_id;
models_[curr_tree]->Shrinkage(-1.0);
train_score_updater_->AddScore(models_[curr_tree].get(), cur_tree_id);
for (auto& score_updater : valid_score_updater_) {
score_updater->AddScore(models_[curr_tree].get(), cur_tree_id);
}
}
// remove model
for (int cur_tree_id = 0; cur_tree_id < num_tree_per_iteration_; ++cur_tree_id) {
models_.pop_back();
}
--iter_;
}
bool GBDT::EvalAndCheckEarlyStopping() {
bool is_met_early_stopping = false;
// print message for metric
auto best_msg = OutputMetric(iter_);
is_met_early_stopping = !best_msg.empty();
if (is_met_early_stopping) {
Log::Info("Early stopping at iteration %d, the best iteration round is %d",
iter_, iter_ - early_stopping_round_);
Log::Info("Output of best iteration round:\n%s", best_msg.c_str());
// pop last early_stopping_round_ models
for (int i = 0; i < early_stopping_round_ * num_tree_per_iteration_; ++i) {
models_.pop_back();
}
}
return is_met_early_stopping;
}
void GBDT::UpdateScore(const Tree* tree, const int cur_tree_id) {
Common::FunctionTimer fun_timer("GBDT::UpdateScore", global_timer);
// update training score
if (!is_use_subset_) {
train_score_updater_->AddScore(tree_learner_.get(), tree, cur_tree_id);
// we need to predict out-of-bag scores of data for boosting
if (num_data_ - bag_data_cnt_ > 0) {
train_score_updater_->AddScore(tree, bag_data_indices_.data() + bag_data_cnt_, num_data_ - bag_data_cnt_, cur_tree_id);
}
} else {
train_score_updater_->AddScore(tree, cur_tree_id);
}
// update validation score
for (auto& score_updater : valid_score_updater_) {
score_updater->AddScore(tree, cur_tree_id);
}
}
std::vector<double> GBDT::EvalOneMetric(const Metric* metric, const double* score) const {
return metric->Eval(score, objective_function_);
}
std::string GBDT::OutputMetric(int iter) {
bool need_output = (iter % config_->metric_freq) == 0;
std::string ret = "";
std::stringstream msg_buf;
std::vector<std::pair<size_t, size_t>> meet_early_stopping_pairs;
// print training metric
if (need_output) {
for (auto& sub_metric : training_metrics_) {
auto name = sub_metric->GetName();
auto scores = EvalOneMetric(sub_metric, train_score_updater_->score());
for (size_t k = 0; k < name.size(); ++k) {
std::stringstream tmp_buf;
tmp_buf << "Iteration:" << iter
<< ", training " << name[k]
<< " : " << scores[k];
Log::Info(tmp_buf.str().c_str());
if (early_stopping_round_ > 0) {
msg_buf << tmp_buf.str() << '\n';
}
}
}
}
// print validation metric
if (need_output || early_stopping_round_ > 0) {
for (size_t i = 0; i < valid_metrics_.size(); ++i) {
for (size_t j = 0; j < valid_metrics_[i].size(); ++j) {
auto test_scores = EvalOneMetric(valid_metrics_[i][j], valid_score_updater_[i]->score());
auto name = valid_metrics_[i][j]->GetName();
for (size_t k = 0; k < name.size(); ++k) {
std::stringstream tmp_buf;
tmp_buf << "Iteration:" << iter
<< ", valid_" << i + 1 << " " << name[k]
<< " : " << test_scores[k];
if (need_output) {
Log::Info(tmp_buf.str().c_str());
}
if (early_stopping_round_ > 0) {
msg_buf << tmp_buf.str() << '\n';
}
}
if (es_first_metric_only_ && j > 0) { continue; }
if (ret.empty() && early_stopping_round_ > 0) {
auto cur_score = valid_metrics_[i][j]->factor_to_bigger_better() * test_scores.back();
if (cur_score > best_score_[i][j]) {
best_score_[i][j] = cur_score;
best_iter_[i][j] = iter;
meet_early_stopping_pairs.emplace_back(i, j);
} else {
if (iter - best_iter_[i][j] >= early_stopping_round_) { ret = best_msg_[i][j]; }
}
}
}
}
}
for (auto& pair : meet_early_stopping_pairs) {
best_msg_[pair.first][pair.second] = msg_buf.str();
}
return ret;
}
/*! \brief Get eval result */
std::vector<double> GBDT::GetEvalAt(int data_idx) const {
CHECK(data_idx >= 0 && data_idx <= static_cast<int>(valid_score_updater_.size()));
std::vector<double> ret;
if (data_idx == 0) {
for (auto& sub_metric : training_metrics_) {
auto scores = EvalOneMetric(sub_metric, train_score_updater_->score());
for (auto score : scores) {
ret.push_back(score);
}
}
} else {
auto used_idx = data_idx - 1;
for (size_t j = 0; j < valid_metrics_[used_idx].size(); ++j) {
auto test_scores = EvalOneMetric(valid_metrics_[used_idx][j], valid_score_updater_[used_idx]->score());
for (auto score : test_scores) {
ret.push_back(score);
}
}
}
return ret;
}
/*! \brief Get training scores result */
const double* GBDT::GetTrainingScore(int64_t* out_len) {
*out_len = static_cast<int64_t>(train_score_updater_->num_data()) * num_class_;
return train_score_updater_->score();
}
void GBDT::PredictContrib(const double* features, double* output) const {
// set zero
const int num_features = max_feature_idx_ + 1;
std::memset(output, 0, sizeof(double) * num_tree_per_iteration_ * (num_features + 1));
const int end_iteration_for_pred = start_iteration_for_pred_ + num_iteration_for_pred_;
for (int i = start_iteration_for_pred_; i < end_iteration_for_pred; ++i) {
// predict all the trees for one iteration
for (int k = 0; k < num_tree_per_iteration_; ++k) {
models_[i * num_tree_per_iteration_ + k]->PredictContrib(features, num_features, output + k*(num_features + 1));
}
}
}
void GBDT::PredictContribByMap(const std::unordered_map<int, double>& features,
std::vector<std::unordered_map<int, double>>* output) const {
const int num_features = max_feature_idx_ + 1;
const int end_iteration_for_pred = start_iteration_for_pred_ + num_iteration_for_pred_;
for (int i = start_iteration_for_pred_; i < end_iteration_for_pred; ++i) {
// predict all the trees for one iteration
for (int k = 0; k < num_tree_per_iteration_; ++k) {
models_[i * num_tree_per_iteration_ + k]->PredictContribByMap(features, num_features, &((*output)[k]));
}
}
}
void GBDT::GetPredictAt(int data_idx, double* out_result, int64_t* out_len) {
CHECK(data_idx >= 0 && data_idx <= static_cast<int>(valid_score_updater_.size()));
const double* raw_scores = nullptr;
data_size_t num_data = 0;
if (data_idx == 0) {
raw_scores = GetTrainingScore(out_len);
num_data = train_score_updater_->num_data();
} else {
auto used_idx = data_idx - 1;
raw_scores = valid_score_updater_[used_idx]->score();
num_data = valid_score_updater_[used_idx]->num_data();
*out_len = static_cast<int64_t>(num_data) * num_class_;
}
if (objective_function_ != nullptr) {
#pragma omp parallel for schedule(static)
for (data_size_t i = 0; i < num_data; ++i) {
std::vector<double> tree_pred(num_tree_per_iteration_);
for (int j = 0; j < num_tree_per_iteration_; ++j) {
tree_pred[j] = raw_scores[j * num_data + i];
}
std::vector<double> tmp_result(num_class_);
objective_function_->ConvertOutput(tree_pred.data(), tmp_result.data());
for (int j = 0; j < num_class_; ++j) {
out_result[j * num_data + i] = static_cast<double>(tmp_result[j]);
}
}
} else {
#pragma omp parallel for schedule(static)
for (data_size_t i = 0; i < num_data; ++i) {
for (int j = 0; j < num_tree_per_iteration_; ++j) {
out_result[j * num_data + i] = static_cast<double>(raw_scores[j * num_data + i]);
}
}
}
}
double GBDT::GetUpperBoundValue() const {
double max_value = 0.0;
for (const auto &tree : models_) {
max_value += tree->GetUpperBoundValue();
}
return max_value;
}
double GBDT::GetLowerBoundValue() const {
double min_value = 0.0;
for (const auto &tree : models_) {
min_value += tree->GetLowerBoundValue();
}
return min_value;
}
void GBDT::ResetTrainingData(const Dataset* train_data, const ObjectiveFunction* objective_function,
const std::vector<const Metric*>& training_metrics) {
if (train_data != train_data_ && !train_data_->CheckAlign(*train_data)) {
Log::Fatal("Cannot reset training data, since new training data has different bin mappers");
}
objective_function_ = objective_function;
if (objective_function_ != nullptr) {
CHECK_EQ(num_tree_per_iteration_, objective_function_->NumModelPerIteration());
if (objective_function_->IsRenewTreeOutput() && !config_->monotone_constraints.empty()) {
Log::Fatal("Cannot use ``monotone_constraints`` in %s objective, please disable it.", objective_function_->GetName());
}
}
is_constant_hessian_ = GetIsConstHessian(objective_function);
// push training metrics
training_metrics_.clear();
for (const auto& metric : training_metrics) {
training_metrics_.push_back(metric);
}
training_metrics_.shrink_to_fit();
if (train_data != train_data_) {
train_data_ = train_data;
// not same training data, need reset score and others
// create score tracker
train_score_updater_.reset(new ScoreUpdater(train_data_, num_tree_per_iteration_));
// update score
for (int i = 0; i < iter_; ++i) {
for (int cur_tree_id = 0; cur_tree_id < num_tree_per_iteration_; ++cur_tree_id) {
auto curr_tree = (i + num_init_iteration_) * num_tree_per_iteration_ + cur_tree_id;
train_score_updater_->AddScore(models_[curr_tree].get(), cur_tree_id);
}
}
num_data_ = train_data_->num_data();
// create buffer for gradients and hessians
if (objective_function_ != nullptr) {
size_t total_size = static_cast<size_t>(num_data_) * num_tree_per_iteration_;
gradients_.resize(total_size);
hessians_.resize(total_size);
}
max_feature_idx_ = train_data_->num_total_features() - 1;
label_idx_ = train_data_->label_idx();
feature_names_ = train_data_->feature_names();
feature_infos_ = train_data_->feature_infos();
parser_config_str_ = train_data_->parser_config_str();
tree_learner_->ResetTrainingData(train_data, is_constant_hessian_);
ResetBaggingConfig(config_.get(), true);
} else {
tree_learner_->ResetIsConstantHessian(is_constant_hessian_);
}
}
void GBDT::ResetConfig(const Config* config) {
auto new_config = std::unique_ptr<Config>(new Config(*config));
if (!config->monotone_constraints.empty()) {
CHECK_EQ(static_cast<size_t>(train_data_->num_total_features()), config->monotone_constraints.size());
}
if (!config->feature_contri.empty()) {
CHECK_EQ(static_cast<size_t>(train_data_->num_total_features()), config->feature_contri.size());
}
if (objective_function_ != nullptr && objective_function_->IsRenewTreeOutput() && !config->monotone_constraints.empty()) {
Log::Fatal("Cannot use ``monotone_constraints`` in %s objective, please disable it.", objective_function_->GetName());
}
early_stopping_round_ = new_config->early_stopping_round;
shrinkage_rate_ = new_config->learning_rate;
if (tree_learner_ != nullptr) {
tree_learner_->ResetConfig(new_config.get());
}
if (train_data_ != nullptr) {
ResetBaggingConfig(new_config.get(), false);
}
if (config_.get() != nullptr && config_->forcedsplits_filename != new_config->forcedsplits_filename) {
// load forced_splits file
if (!new_config->forcedsplits_filename.empty()) {
std::ifstream forced_splits_file(
new_config->forcedsplits_filename.c_str());
std::stringstream buffer;
buffer << forced_splits_file.rdbuf();
std::string err;
forced_splits_json_ = Json::parse(buffer.str(), &err);
tree_learner_->SetForcedSplit(&forced_splits_json_);
} else {
forced_splits_json_ = Json();
tree_learner_->SetForcedSplit(nullptr);
}
}
config_.reset(new_config.release());
}
void GBDT::ResetBaggingConfig(const Config* config, bool is_change_dataset) {
// if need bagging, create buffer
data_size_t num_pos_data = 0;
if (objective_function_ != nullptr) {
num_pos_data = objective_function_->NumPositiveData();
}
bool balance_bagging_cond = (config->pos_bagging_fraction < 1.0 || config->neg_bagging_fraction < 1.0) && (num_pos_data > 0);
if ((config->bagging_fraction < 1.0 || balance_bagging_cond) && config->bagging_freq > 0) {
need_re_bagging_ = false;
if (!is_change_dataset &&
config_.get() != nullptr && config_->bagging_fraction == config->bagging_fraction && config_->bagging_freq == config->bagging_freq
&& config_->pos_bagging_fraction == config->pos_bagging_fraction && config_->neg_bagging_fraction == config->neg_bagging_fraction) {
return;
}
if (balance_bagging_cond) {
balanced_bagging_ = true;
bag_data_cnt_ = static_cast<data_size_t>(num_pos_data * config->pos_bagging_fraction)
+ static_cast<data_size_t>((num_data_ - num_pos_data) * config->neg_bagging_fraction);
} else {
bag_data_cnt_ = static_cast<data_size_t>(config->bagging_fraction * num_data_);
}
bag_data_indices_.resize(num_data_);
bagging_runner_.ReSize(num_data_);
bagging_rands_.clear();
for (int i = 0;
i < (num_data_ + bagging_rand_block_ - 1) / bagging_rand_block_; ++i) {
bagging_rands_.emplace_back(config_->bagging_seed + i);
}
double average_bag_rate =
(static_cast<double>(bag_data_cnt_) / num_data_) / config->bagging_freq;
is_use_subset_ = false;
const int group_threshold_usesubset = 100;
if (average_bag_rate <= 0.5
&& (train_data_->num_feature_groups() < group_threshold_usesubset)) {
if (tmp_subset_ == nullptr || is_change_dataset) {
tmp_subset_.reset(new Dataset(bag_data_cnt_));
tmp_subset_->CopyFeatureMapperFrom(train_data_);
}
is_use_subset_ = true;
Log::Debug("Use subset for bagging");
}
need_re_bagging_ = true;
if (is_use_subset_ && bag_data_cnt_ < num_data_) {
if (objective_function_ == nullptr) {
size_t total_size = static_cast<size_t>(num_data_) * num_tree_per_iteration_;
gradients_.resize(total_size);
hessians_.resize(total_size);
}
}
} else {
bag_data_cnt_ = num_data_;
bag_data_indices_.clear();
bagging_runner_.ReSize(0);
is_use_subset_ = false;
}
}
} // namespace LightGBM