-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
serial_tree_learner.cpp
817 lines (751 loc) · 34.3 KB
/
serial_tree_learner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
/*!
* Copyright (c) 2016 Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the project root for license information.
*/
#include "serial_tree_learner.h"
#include <LightGBM/network.h>
#include <LightGBM/objective_function.h>
#include <LightGBM/utils/array_args.h>
#include <LightGBM/utils/common.h>
#include <algorithm>
#include <queue>
#include <unordered_map>
#include <utility>
#include "cost_effective_gradient_boosting.hpp"
namespace LightGBM {
SerialTreeLearner::SerialTreeLearner(const Config* config)
: config_(config), col_sampler_(config) {
}
SerialTreeLearner::~SerialTreeLearner() {
}
void SerialTreeLearner::Init(const Dataset* train_data, bool is_constant_hessian) {
train_data_ = train_data;
num_data_ = train_data_->num_data();
num_features_ = train_data_->num_features();
int max_cache_size = 0;
// Get the max size of pool
if (config_->histogram_pool_size <= 0) {
max_cache_size = config_->num_leaves;
} else {
size_t total_histogram_size = 0;
for (int i = 0; i < train_data_->num_features(); ++i) {
total_histogram_size += kHistEntrySize * train_data_->FeatureNumBin(i);
}
max_cache_size = static_cast<int>(config_->histogram_pool_size * 1024 * 1024 / total_histogram_size);
}
// at least need 2 leaves
max_cache_size = std::max(2, max_cache_size);
max_cache_size = std::min(max_cache_size, config_->num_leaves);
// push split information for all leaves
best_split_per_leaf_.resize(config_->num_leaves);
constraints_.reset(LeafConstraintsBase::Create(config_, config_->num_leaves, train_data_->num_features()));
// initialize splits for leaf
smaller_leaf_splits_.reset(new LeafSplits(train_data_->num_data(), config_));
larger_leaf_splits_.reset(new LeafSplits(train_data_->num_data(), config_));
// initialize data partition
data_partition_.reset(new DataPartition(num_data_, config_->num_leaves));
col_sampler_.SetTrainingData(train_data_);
// initialize ordered gradients and hessians
ordered_gradients_.resize(num_data_);
ordered_hessians_.resize(num_data_);
GetShareStates(train_data_, is_constant_hessian, true);
histogram_pool_.DynamicChangeSize(train_data_,
share_state_->num_hist_total_bin(),
share_state_->feature_hist_offsets(),
config_, max_cache_size, config_->num_leaves);
Log::Info("Number of data points in the train set: %d, number of used features: %d", num_data_, num_features_);
if (CostEfficientGradientBoosting::IsEnable(config_)) {
cegb_.reset(new CostEfficientGradientBoosting(this));
cegb_->Init();
}
}
void SerialTreeLearner::GetShareStates(const Dataset* dataset,
bool is_constant_hessian,
bool is_first_time) {
if (is_first_time) {
share_state_.reset(dataset->GetShareStates(
ordered_gradients_.data(), ordered_hessians_.data(),
col_sampler_.is_feature_used_bytree(), is_constant_hessian,
config_->force_col_wise, config_->force_row_wise));
} else {
CHECK_NOTNULL(share_state_);
// cannot change is_hist_col_wise during training
share_state_.reset(dataset->GetShareStates(
ordered_gradients_.data(), ordered_hessians_.data(), col_sampler_.is_feature_used_bytree(),
is_constant_hessian, share_state_->is_col_wise,
!share_state_->is_col_wise));
}
CHECK_NOTNULL(share_state_);
}
void SerialTreeLearner::ResetTrainingDataInner(const Dataset* train_data,
bool is_constant_hessian,
bool reset_multi_val_bin) {
train_data_ = train_data;
num_data_ = train_data_->num_data();
CHECK_EQ(num_features_, train_data_->num_features());
// initialize splits for leaf
smaller_leaf_splits_->ResetNumData(num_data_);
larger_leaf_splits_->ResetNumData(num_data_);
// initialize data partition
data_partition_->ResetNumData(num_data_);
if (reset_multi_val_bin) {
col_sampler_.SetTrainingData(train_data_);
GetShareStates(train_data_, is_constant_hessian, false);
}
// initialize ordered gradients and hessians
ordered_gradients_.resize(num_data_);
ordered_hessians_.resize(num_data_);
if (cegb_ != nullptr) {
cegb_->Init();
}
}
void SerialTreeLearner::ResetConfig(const Config* config) {
if (config_->num_leaves != config->num_leaves) {
config_ = config;
int max_cache_size = 0;
// Get the max size of pool
if (config->histogram_pool_size <= 0) {
max_cache_size = config_->num_leaves;
} else {
size_t total_histogram_size = 0;
for (int i = 0; i < train_data_->num_features(); ++i) {
total_histogram_size += kHistEntrySize * train_data_->FeatureNumBin(i);
}
max_cache_size = static_cast<int>(config_->histogram_pool_size * 1024 * 1024 / total_histogram_size);
}
// at least need 2 leaves
max_cache_size = std::max(2, max_cache_size);
max_cache_size = std::min(max_cache_size, config_->num_leaves);
histogram_pool_.DynamicChangeSize(train_data_,
share_state_->num_hist_total_bin(),
share_state_->feature_hist_offsets(),
config_, max_cache_size, config_->num_leaves);
// push split information for all leaves
best_split_per_leaf_.resize(config_->num_leaves);
data_partition_->ResetLeaves(config_->num_leaves);
} else {
config_ = config;
}
col_sampler_.SetConfig(config_);
histogram_pool_.ResetConfig(train_data_, config_);
if (CostEfficientGradientBoosting::IsEnable(config_)) {
if (cegb_ == nullptr) {
cegb_.reset(new CostEfficientGradientBoosting(this));
}
cegb_->Init();
}
constraints_.reset(LeafConstraintsBase::Create(config_, config_->num_leaves, train_data_->num_features()));
}
Tree* SerialTreeLearner::Train(const score_t* gradients, const score_t *hessians, bool /*is_first_tree*/) {
Common::FunctionTimer fun_timer("SerialTreeLearner::Train", global_timer);
gradients_ = gradients;
hessians_ = hessians;
int num_threads = OMP_NUM_THREADS();
if (share_state_->num_threads != num_threads && share_state_->num_threads > 0) {
Log::Warning(
"Detected that num_threads changed during training (from %d to %d), "
"it may cause unexpected errors.",
share_state_->num_threads, num_threads);
}
share_state_->num_threads = num_threads;
// some initial works before training
BeforeTrain();
bool track_branch_features = !(config_->interaction_constraints_vector.empty());
auto tree = std::unique_ptr<Tree>(new Tree(config_->num_leaves, track_branch_features, false));
auto tree_ptr = tree.get();
constraints_->ShareTreePointer(tree_ptr);
// root leaf
int left_leaf = 0;
int cur_depth = 1;
// only root leaf can be splitted on first time
int right_leaf = -1;
int init_splits = ForceSplits(tree_ptr, &left_leaf, &right_leaf, &cur_depth);
for (int split = init_splits; split < config_->num_leaves - 1; ++split) {
// some initial works before finding best split
if (BeforeFindBestSplit(tree_ptr, left_leaf, right_leaf)) {
// find best threshold for every feature
FindBestSplits(tree_ptr);
}
// Get a leaf with max split gain
int best_leaf = static_cast<int>(ArrayArgs<SplitInfo>::ArgMax(best_split_per_leaf_));
// Get split information for best leaf
const SplitInfo& best_leaf_SplitInfo = best_split_per_leaf_[best_leaf];
// cannot split, quit
if (best_leaf_SplitInfo.gain <= 0.0) {
Log::Warning("No further splits with positive gain, best gain: %f", best_leaf_SplitInfo.gain);
break;
}
// split tree with best leaf
Split(tree_ptr, best_leaf, &left_leaf, &right_leaf);
cur_depth = std::max(cur_depth, tree->leaf_depth(left_leaf));
}
Log::Debug("Trained a tree with leaves = %d and max_depth = %d", tree->num_leaves(), cur_depth);
return tree.release();
}
Tree* SerialTreeLearner::FitByExistingTree(const Tree* old_tree, const score_t* gradients, const score_t *hessians) const {
auto tree = std::unique_ptr<Tree>(new Tree(*old_tree));
CHECK_GE(data_partition_->num_leaves(), tree->num_leaves());
OMP_INIT_EX();
#pragma omp parallel for schedule(static)
for (int i = 0; i < tree->num_leaves(); ++i) {
OMP_LOOP_EX_BEGIN();
data_size_t cnt_leaf_data = 0;
auto tmp_idx = data_partition_->GetIndexOnLeaf(i, &cnt_leaf_data);
double sum_grad = 0.0f;
double sum_hess = kEpsilon;
for (data_size_t j = 0; j < cnt_leaf_data; ++j) {
auto idx = tmp_idx[j];
sum_grad += gradients[idx];
sum_hess += hessians[idx];
}
double output;
if ((config_->path_smooth > kEpsilon) & (i > 0)) {
output = FeatureHistogram::CalculateSplittedLeafOutput<true, true, true>(
sum_grad, sum_hess, config_->lambda_l1, config_->lambda_l2,
config_->max_delta_step, config_->path_smooth, cnt_leaf_data, tree->leaf_parent(i));
} else {
output = FeatureHistogram::CalculateSplittedLeafOutput<true, true, false>(
sum_grad, sum_hess, config_->lambda_l1, config_->lambda_l2,
config_->max_delta_step, config_->path_smooth, cnt_leaf_data, 0);
}
auto old_leaf_output = tree->LeafOutput(i);
auto new_leaf_output = output * tree->shrinkage();
tree->SetLeafOutput(i, config_->refit_decay_rate * old_leaf_output + (1.0 - config_->refit_decay_rate) * new_leaf_output);
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
return tree.release();
}
Tree* SerialTreeLearner::FitByExistingTree(const Tree* old_tree, const std::vector<int>& leaf_pred,
const score_t* gradients, const score_t *hessians) const {
data_partition_->ResetByLeafPred(leaf_pred, old_tree->num_leaves());
return FitByExistingTree(old_tree, gradients, hessians);
}
void SerialTreeLearner::BeforeTrain() {
Common::FunctionTimer fun_timer("SerialTreeLearner::BeforeTrain", global_timer);
// reset histogram pool
histogram_pool_.ResetMap();
col_sampler_.ResetByTree();
train_data_->InitTrain(col_sampler_.is_feature_used_bytree(), share_state_.get());
// initialize data partition
data_partition_->Init();
constraints_->Reset();
// reset the splits for leaves
for (int i = 0; i < config_->num_leaves; ++i) {
best_split_per_leaf_[i].Reset();
}
// Sumup for root
if (data_partition_->leaf_count(0) == num_data_) {
// use all data
smaller_leaf_splits_->Init(gradients_, hessians_);
} else {
// use bagging, only use part of data
smaller_leaf_splits_->Init(0, data_partition_.get(), gradients_, hessians_);
}
larger_leaf_splits_->Init();
}
bool SerialTreeLearner::BeforeFindBestSplit(const Tree* tree, int left_leaf, int right_leaf) {
Common::FunctionTimer fun_timer("SerialTreeLearner::BeforeFindBestSplit", global_timer);
// check depth of current leaf
if (config_->max_depth > 0) {
// only need to check left leaf, since right leaf is in same level of left leaf
if (tree->leaf_depth(left_leaf) >= config_->max_depth) {
best_split_per_leaf_[left_leaf].gain = kMinScore;
if (right_leaf >= 0) {
best_split_per_leaf_[right_leaf].gain = kMinScore;
}
return false;
}
}
data_size_t num_data_in_left_child = GetGlobalDataCountInLeaf(left_leaf);
data_size_t num_data_in_right_child = GetGlobalDataCountInLeaf(right_leaf);
// no enough data to continue
if (num_data_in_right_child < static_cast<data_size_t>(config_->min_data_in_leaf * 2)
&& num_data_in_left_child < static_cast<data_size_t>(config_->min_data_in_leaf * 2)) {
best_split_per_leaf_[left_leaf].gain = kMinScore;
if (right_leaf >= 0) {
best_split_per_leaf_[right_leaf].gain = kMinScore;
}
return false;
}
parent_leaf_histogram_array_ = nullptr;
// only have root
if (right_leaf < 0) {
histogram_pool_.Get(left_leaf, &smaller_leaf_histogram_array_);
larger_leaf_histogram_array_ = nullptr;
} else if (num_data_in_left_child < num_data_in_right_child) {
// put parent(left) leaf's histograms into larger leaf's histograms
if (histogram_pool_.Get(left_leaf, &larger_leaf_histogram_array_)) { parent_leaf_histogram_array_ = larger_leaf_histogram_array_; }
histogram_pool_.Move(left_leaf, right_leaf);
histogram_pool_.Get(left_leaf, &smaller_leaf_histogram_array_);
} else {
// put parent(left) leaf's histograms to larger leaf's histograms
if (histogram_pool_.Get(left_leaf, &larger_leaf_histogram_array_)) { parent_leaf_histogram_array_ = larger_leaf_histogram_array_; }
histogram_pool_.Get(right_leaf, &smaller_leaf_histogram_array_);
}
return true;
}
void SerialTreeLearner::FindBestSplits(const Tree* tree) {
std::vector<int8_t> is_feature_used(num_features_, 0);
#pragma omp parallel for schedule(static, 256) if (num_features_ >= 512)
for (int feature_index = 0; feature_index < num_features_; ++feature_index) {
if (!col_sampler_.is_feature_used_bytree()[feature_index]) continue;
if (parent_leaf_histogram_array_ != nullptr
&& !parent_leaf_histogram_array_[feature_index].is_splittable()) {
smaller_leaf_histogram_array_[feature_index].set_is_splittable(false);
continue;
}
is_feature_used[feature_index] = 1;
}
bool use_subtract = parent_leaf_histogram_array_ != nullptr;
#ifdef USE_CUDA
if (LGBM_config_::current_learner == use_cpu_learner) {
SerialTreeLearner::ConstructHistograms(is_feature_used, use_subtract);
} else {
ConstructHistograms(is_feature_used, use_subtract);
}
#else
ConstructHistograms(is_feature_used, use_subtract);
#endif
FindBestSplitsFromHistograms(is_feature_used, use_subtract, tree);
}
void SerialTreeLearner::ConstructHistograms(
const std::vector<int8_t>& is_feature_used, bool use_subtract) {
Common::FunctionTimer fun_timer("SerialTreeLearner::ConstructHistograms",
global_timer);
// construct smaller leaf
hist_t* ptr_smaller_leaf_hist_data =
smaller_leaf_histogram_array_[0].RawData() - kHistOffset;
train_data_->ConstructHistograms(
is_feature_used, smaller_leaf_splits_->data_indices(),
smaller_leaf_splits_->num_data_in_leaf(), gradients_, hessians_,
ordered_gradients_.data(), ordered_hessians_.data(), share_state_.get(),
ptr_smaller_leaf_hist_data);
if (larger_leaf_histogram_array_ != nullptr && !use_subtract) {
// construct larger leaf
hist_t* ptr_larger_leaf_hist_data =
larger_leaf_histogram_array_[0].RawData() - kHistOffset;
train_data_->ConstructHistograms(
is_feature_used, larger_leaf_splits_->data_indices(),
larger_leaf_splits_->num_data_in_leaf(), gradients_, hessians_,
ordered_gradients_.data(), ordered_hessians_.data(), share_state_.get(),
ptr_larger_leaf_hist_data);
}
}
void SerialTreeLearner::FindBestSplitsFromHistograms(
const std::vector<int8_t>& is_feature_used, bool use_subtract, const Tree* tree) {
Common::FunctionTimer fun_timer(
"SerialTreeLearner::FindBestSplitsFromHistograms", global_timer);
std::vector<SplitInfo> smaller_best(share_state_->num_threads);
std::vector<SplitInfo> larger_best(share_state_->num_threads);
std::vector<int8_t> smaller_node_used_features = col_sampler_.GetByNode(tree, smaller_leaf_splits_->leaf_index());
std::vector<int8_t> larger_node_used_features;
double smaller_leaf_parent_output = GetParentOutput(tree, smaller_leaf_splits_.get());
double larger_leaf_parent_output = 0;
if (larger_leaf_splits_ != nullptr && larger_leaf_splits_->leaf_index() >= 0) {
larger_leaf_parent_output = GetParentOutput(tree, larger_leaf_splits_.get());
}
if (larger_leaf_splits_->leaf_index() >= 0) {
larger_node_used_features = col_sampler_.GetByNode(tree, larger_leaf_splits_->leaf_index());
}
OMP_INIT_EX();
// find splits
#pragma omp parallel for schedule(static) num_threads(share_state_->num_threads)
for (int feature_index = 0; feature_index < num_features_; ++feature_index) {
OMP_LOOP_EX_BEGIN();
if (!is_feature_used[feature_index]) {
continue;
}
const int tid = omp_get_thread_num();
train_data_->FixHistogram(
feature_index, smaller_leaf_splits_->sum_gradients(),
smaller_leaf_splits_->sum_hessians(),
smaller_leaf_histogram_array_[feature_index].RawData());
int real_fidx = train_data_->RealFeatureIndex(feature_index);
ComputeBestSplitForFeature(smaller_leaf_histogram_array_, feature_index,
real_fidx,
smaller_node_used_features[feature_index],
smaller_leaf_splits_->num_data_in_leaf(),
smaller_leaf_splits_.get(), &smaller_best[tid],
smaller_leaf_parent_output);
// only has root leaf
if (larger_leaf_splits_ == nullptr ||
larger_leaf_splits_->leaf_index() < 0) {
continue;
}
if (use_subtract) {
larger_leaf_histogram_array_[feature_index].Subtract(
smaller_leaf_histogram_array_[feature_index]);
} else {
train_data_->FixHistogram(
feature_index, larger_leaf_splits_->sum_gradients(),
larger_leaf_splits_->sum_hessians(),
larger_leaf_histogram_array_[feature_index].RawData());
}
ComputeBestSplitForFeature(larger_leaf_histogram_array_, feature_index,
real_fidx,
larger_node_used_features[feature_index],
larger_leaf_splits_->num_data_in_leaf(),
larger_leaf_splits_.get(), &larger_best[tid],
larger_leaf_parent_output);
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
auto smaller_best_idx = ArrayArgs<SplitInfo>::ArgMax(smaller_best);
int leaf = smaller_leaf_splits_->leaf_index();
best_split_per_leaf_[leaf] = smaller_best[smaller_best_idx];
if (larger_leaf_splits_ != nullptr &&
larger_leaf_splits_->leaf_index() >= 0) {
leaf = larger_leaf_splits_->leaf_index();
auto larger_best_idx = ArrayArgs<SplitInfo>::ArgMax(larger_best);
best_split_per_leaf_[leaf] = larger_best[larger_best_idx];
}
}
int32_t SerialTreeLearner::ForceSplits(Tree* tree, int* left_leaf,
int* right_leaf, int *cur_depth) {
bool abort_last_forced_split = false;
if (forced_split_json_ == nullptr) {
return 0;
}
int32_t result_count = 0;
// start at root leaf
*left_leaf = 0;
std::queue<std::pair<Json, int>> q;
Json left = *forced_split_json_;
Json right;
bool left_smaller = true;
std::unordered_map<int, SplitInfo> forceSplitMap;
q.push(std::make_pair(left, *left_leaf));
while (!q.empty()) {
// before processing next node from queue, store info for current left/right leaf
// store "best split" for left and right, even if they might be overwritten by forced split
if (BeforeFindBestSplit(tree, *left_leaf, *right_leaf)) {
FindBestSplits(tree);
}
// then, compute own splits
SplitInfo left_split;
SplitInfo right_split;
if (!left.is_null()) {
const int left_feature = left["feature"].int_value();
const double left_threshold_double = left["threshold"].number_value();
const int left_inner_feature_index = train_data_->InnerFeatureIndex(left_feature);
const uint32_t left_threshold = train_data_->BinThreshold(
left_inner_feature_index, left_threshold_double);
auto leaf_histogram_array = (left_smaller) ? smaller_leaf_histogram_array_ : larger_leaf_histogram_array_;
auto left_leaf_splits = (left_smaller) ? smaller_leaf_splits_.get() : larger_leaf_splits_.get();
leaf_histogram_array[left_inner_feature_index].GatherInfoForThreshold(
left_leaf_splits->sum_gradients(),
left_leaf_splits->sum_hessians(),
left_threshold,
left_leaf_splits->num_data_in_leaf(),
left_leaf_splits->weight(),
&left_split);
left_split.feature = left_feature;
forceSplitMap[*left_leaf] = left_split;
if (left_split.gain < 0) {
forceSplitMap.erase(*left_leaf);
}
}
if (!right.is_null()) {
const int right_feature = right["feature"].int_value();
const double right_threshold_double = right["threshold"].number_value();
const int right_inner_feature_index = train_data_->InnerFeatureIndex(right_feature);
const uint32_t right_threshold = train_data_->BinThreshold(
right_inner_feature_index, right_threshold_double);
auto leaf_histogram_array = (left_smaller) ? larger_leaf_histogram_array_ : smaller_leaf_histogram_array_;
auto right_leaf_splits = (left_smaller) ? larger_leaf_splits_.get() : smaller_leaf_splits_.get();
leaf_histogram_array[right_inner_feature_index].GatherInfoForThreshold(
right_leaf_splits->sum_gradients(),
right_leaf_splits->sum_hessians(),
right_threshold,
right_leaf_splits->num_data_in_leaf(),
right_leaf_splits->weight(),
&right_split);
right_split.feature = right_feature;
forceSplitMap[*right_leaf] = right_split;
if (right_split.gain < 0) {
forceSplitMap.erase(*right_leaf);
}
}
std::pair<Json, int> pair = q.front();
q.pop();
int current_leaf = pair.second;
// split info should exist because searching in bfs fashion - should have added from parent
if (forceSplitMap.find(current_leaf) == forceSplitMap.end()) {
abort_last_forced_split = true;
break;
}
best_split_per_leaf_[current_leaf] = forceSplitMap[current_leaf];
Split(tree, current_leaf, left_leaf, right_leaf);
left_smaller = best_split_per_leaf_[current_leaf].left_count <
best_split_per_leaf_[current_leaf].right_count;
left = Json();
right = Json();
if ((pair.first).object_items().count("left") > 0) {
left = (pair.first)["left"];
if (left.object_items().count("feature") > 0 && left.object_items().count("threshold") > 0) {
q.push(std::make_pair(left, *left_leaf));
}
}
if ((pair.first).object_items().count("right") > 0) {
right = (pair.first)["right"];
if (right.object_items().count("feature") > 0 && right.object_items().count("threshold") > 0) {
q.push(std::make_pair(right, *right_leaf));
}
}
result_count++;
*(cur_depth) = std::max(*(cur_depth), tree->leaf_depth(*left_leaf));
}
if (abort_last_forced_split) {
int best_leaf =
static_cast<int>(ArrayArgs<SplitInfo>::ArgMax(best_split_per_leaf_));
const SplitInfo& best_leaf_SplitInfo = best_split_per_leaf_[best_leaf];
if (best_leaf_SplitInfo.gain <= 0.0) {
Log::Warning("No further splits with positive gain, best gain: %f",
best_leaf_SplitInfo.gain);
return config_->num_leaves;
}
Split(tree, best_leaf, left_leaf, right_leaf);
*(cur_depth) = std::max(*(cur_depth), tree->leaf_depth(*left_leaf));
++result_count;
}
return result_count;
}
void SerialTreeLearner::SplitInner(Tree* tree, int best_leaf, int* left_leaf,
int* right_leaf, bool update_cnt) {
Common::FunctionTimer fun_timer("SerialTreeLearner::SplitInner", global_timer);
SplitInfo& best_split_info = best_split_per_leaf_[best_leaf];
const int inner_feature_index =
train_data_->InnerFeatureIndex(best_split_info.feature);
if (cegb_ != nullptr) {
cegb_->UpdateLeafBestSplits(tree, best_leaf, &best_split_info,
&best_split_per_leaf_);
}
*left_leaf = best_leaf;
auto next_leaf_id = tree->NextLeafId();
// update before tree split
constraints_->BeforeSplit(best_leaf, next_leaf_id,
best_split_info.monotone_type);
bool is_numerical_split =
train_data_->FeatureBinMapper(inner_feature_index)->bin_type() ==
BinType::NumericalBin;
if (is_numerical_split) {
auto threshold_double = train_data_->RealThreshold(
inner_feature_index, best_split_info.threshold);
data_partition_->Split(best_leaf, train_data_, inner_feature_index,
&best_split_info.threshold, 1,
best_split_info.default_left, next_leaf_id);
if (update_cnt) {
// don't need to update this in data-based parallel model
best_split_info.left_count = data_partition_->leaf_count(*left_leaf);
best_split_info.right_count = data_partition_->leaf_count(next_leaf_id);
}
// split tree, will return right leaf
*right_leaf = tree->Split(
best_leaf, inner_feature_index, best_split_info.feature,
best_split_info.threshold, threshold_double,
static_cast<double>(best_split_info.left_output),
static_cast<double>(best_split_info.right_output),
static_cast<data_size_t>(best_split_info.left_count),
static_cast<data_size_t>(best_split_info.right_count),
static_cast<double>(best_split_info.left_sum_hessian),
static_cast<double>(best_split_info.right_sum_hessian),
// store the true split gain in tree model
static_cast<float>(best_split_info.gain + config_->min_gain_to_split),
train_data_->FeatureBinMapper(inner_feature_index)->missing_type(),
best_split_info.default_left);
} else {
std::vector<uint32_t> cat_bitset_inner =
Common::ConstructBitset(best_split_info.cat_threshold.data(),
best_split_info.num_cat_threshold);
std::vector<int> threshold_int(best_split_info.num_cat_threshold);
for (int i = 0; i < best_split_info.num_cat_threshold; ++i) {
threshold_int[i] = static_cast<int>(train_data_->RealThreshold(
inner_feature_index, best_split_info.cat_threshold[i]));
}
std::vector<uint32_t> cat_bitset = Common::ConstructBitset(
threshold_int.data(), best_split_info.num_cat_threshold);
data_partition_->Split(best_leaf, train_data_, inner_feature_index,
cat_bitset_inner.data(),
static_cast<int>(cat_bitset_inner.size()),
best_split_info.default_left, next_leaf_id);
if (update_cnt) {
// don't need to update this in data-based parallel model
best_split_info.left_count = data_partition_->leaf_count(*left_leaf);
best_split_info.right_count = data_partition_->leaf_count(next_leaf_id);
}
*right_leaf = tree->SplitCategorical(
best_leaf, inner_feature_index, best_split_info.feature,
cat_bitset_inner.data(), static_cast<int>(cat_bitset_inner.size()),
cat_bitset.data(), static_cast<int>(cat_bitset.size()),
static_cast<double>(best_split_info.left_output),
static_cast<double>(best_split_info.right_output),
static_cast<data_size_t>(best_split_info.left_count),
static_cast<data_size_t>(best_split_info.right_count),
static_cast<double>(best_split_info.left_sum_hessian),
static_cast<double>(best_split_info.right_sum_hessian),
// store the true split gain in tree model
static_cast<float>(best_split_info.gain + config_->min_gain_to_split),
train_data_->FeatureBinMapper(inner_feature_index)->missing_type());
}
#ifdef DEBUG
CHECK(*right_leaf == next_leaf_id);
#endif
// init the leaves that used on next iteration
if (best_split_info.left_count < best_split_info.right_count) {
CHECK_GT(best_split_info.left_count, 0);
smaller_leaf_splits_->Init(*left_leaf, data_partition_.get(),
best_split_info.left_sum_gradient,
best_split_info.left_sum_hessian,
best_split_info.left_output);
larger_leaf_splits_->Init(*right_leaf, data_partition_.get(),
best_split_info.right_sum_gradient,
best_split_info.right_sum_hessian,
best_split_info.right_output);
} else {
CHECK_GT(best_split_info.right_count, 0);
smaller_leaf_splits_->Init(*right_leaf, data_partition_.get(),
best_split_info.right_sum_gradient,
best_split_info.right_sum_hessian,
best_split_info.right_output);
larger_leaf_splits_->Init(*left_leaf, data_partition_.get(),
best_split_info.left_sum_gradient,
best_split_info.left_sum_hessian,
best_split_info.left_output);
}
auto leaves_need_update = constraints_->Update(
is_numerical_split, *left_leaf, *right_leaf,
best_split_info.monotone_type, best_split_info.right_output,
best_split_info.left_output, inner_feature_index, best_split_info,
best_split_per_leaf_);
// update leave outputs if needed
for (auto leaf : leaves_need_update) {
RecomputeBestSplitForLeaf(leaf, &best_split_per_leaf_[leaf]);
}
}
void SerialTreeLearner::RenewTreeOutput(Tree* tree, const ObjectiveFunction* obj, std::function<double(const label_t*, int)> residual_getter,
data_size_t total_num_data, const data_size_t* bag_indices, data_size_t bag_cnt) const {
if (obj != nullptr && obj->IsRenewTreeOutput()) {
CHECK_LE(tree->num_leaves(), data_partition_->num_leaves());
const data_size_t* bag_mapper = nullptr;
if (total_num_data != num_data_) {
CHECK_EQ(bag_cnt, num_data_);
bag_mapper = bag_indices;
}
std::vector<int> n_nozeroworker_perleaf(tree->num_leaves(), 1);
int num_machines = Network::num_machines();
#pragma omp parallel for schedule(static)
for (int i = 0; i < tree->num_leaves(); ++i) {
const double output = static_cast<double>(tree->LeafOutput(i));
data_size_t cnt_leaf_data = 0;
auto index_mapper = data_partition_->GetIndexOnLeaf(i, &cnt_leaf_data);
if (cnt_leaf_data > 0) {
// bag_mapper[index_mapper[i]]
const double new_output = obj->RenewTreeOutput(output, residual_getter, index_mapper, bag_mapper, cnt_leaf_data);
tree->SetLeafOutput(i, new_output);
} else {
CHECK_GT(num_machines, 1);
tree->SetLeafOutput(i, 0.0);
n_nozeroworker_perleaf[i] = 0;
}
}
if (num_machines > 1) {
std::vector<double> outputs(tree->num_leaves());
for (int i = 0; i < tree->num_leaves(); ++i) {
outputs[i] = static_cast<double>(tree->LeafOutput(i));
}
outputs = Network::GlobalSum(&outputs);
n_nozeroworker_perleaf = Network::GlobalSum(&n_nozeroworker_perleaf);
for (int i = 0; i < tree->num_leaves(); ++i) {
tree->SetLeafOutput(i, outputs[i] / n_nozeroworker_perleaf[i]);
}
}
}
}
void SerialTreeLearner::ComputeBestSplitForFeature(
FeatureHistogram* histogram_array_, int feature_index, int real_fidx,
int8_t is_feature_used, int num_data, const LeafSplits* leaf_splits,
SplitInfo* best_split, double parent_output) {
bool is_feature_numerical = train_data_->FeatureBinMapper(feature_index)
->bin_type() == BinType::NumericalBin;
if (is_feature_numerical & !config_->monotone_constraints.empty()) {
constraints_->RecomputeConstraintsIfNeeded(
constraints_.get(), feature_index, ~(leaf_splits->leaf_index()),
train_data_->FeatureNumBin(feature_index));
}
SplitInfo new_split;
histogram_array_[feature_index].FindBestThreshold(
leaf_splits->sum_gradients(), leaf_splits->sum_hessians(), num_data,
constraints_->GetFeatureConstraint(leaf_splits->leaf_index(), feature_index), parent_output, &new_split);
new_split.feature = real_fidx;
if (cegb_ != nullptr) {
new_split.gain -=
cegb_->DetlaGain(feature_index, real_fidx, leaf_splits->leaf_index(),
num_data, new_split);
}
if (new_split.monotone_type != 0) {
double penalty = constraints_->ComputeMonotoneSplitGainPenalty(
leaf_splits->leaf_index(), config_->monotone_penalty);
new_split.gain *= penalty;
}
// it is needed to filter the features after the above code.
// Otherwise, the `is_splittable` in `FeatureHistogram` will be wrong, and cause some features being accidentally filtered in the later nodes.
if (new_split > *best_split && is_feature_used) {
*best_split = new_split;
}
}
double SerialTreeLearner::GetParentOutput(const Tree* tree, const LeafSplits* leaf_splits) const {
double parent_output;
if (tree->num_leaves() == 1) {
// for root leaf the "parent" output is its own output because we don't apply any smoothing to the root
parent_output = FeatureHistogram::CalculateSplittedLeafOutput<true, true, true, false>(
leaf_splits->sum_gradients(), leaf_splits->sum_hessians(), config_->lambda_l1,
config_->lambda_l2, config_->max_delta_step, BasicConstraint(),
config_->path_smooth, static_cast<data_size_t>(leaf_splits->num_data_in_leaf()), 0);
} else {
parent_output = leaf_splits->weight();
}
return parent_output;
}
void SerialTreeLearner::RecomputeBestSplitForLeaf(int leaf, SplitInfo* split) {
FeatureHistogram* histogram_array_;
if (!histogram_pool_.Get(leaf, &histogram_array_)) {
Log::Warning(
"Get historical Histogram for leaf %d failed, will skip the "
"``RecomputeBestSplitForLeaf``",
leaf);
return;
}
double sum_gradients = split->left_sum_gradient + split->right_sum_gradient;
double sum_hessians = split->left_sum_hessian + split->right_sum_hessian;
int num_data = split->left_count + split->right_count;
std::vector<SplitInfo> bests(share_state_->num_threads);
LeafSplits leaf_splits(num_data, config_);
leaf_splits.Init(leaf, sum_gradients, sum_hessians);
// can't use GetParentOutput because leaf_splits doesn't have weight property set
double parent_output = 0;
if (config_->path_smooth > kEpsilon) {
parent_output = FeatureHistogram::CalculateSplittedLeafOutput<true, true, true, false>(
sum_gradients, sum_hessians, config_->lambda_l1, config_->lambda_l2, config_->max_delta_step,
BasicConstraint(), config_->path_smooth, static_cast<data_size_t>(num_data), 0);
}
OMP_INIT_EX();
// find splits
#pragma omp parallel for schedule(static) num_threads(share_state_->num_threads)
for (int feature_index = 0; feature_index < num_features_; ++feature_index) {
OMP_LOOP_EX_BEGIN();
if (!col_sampler_.is_feature_used_bytree()[feature_index] ||
!histogram_array_[feature_index].is_splittable()) {
continue;
}
const int tid = omp_get_thread_num();
int real_fidx = train_data_->RealFeatureIndex(feature_index);
ComputeBestSplitForFeature(histogram_array_, feature_index, real_fidx, true,
num_data, &leaf_splits, &bests[tid], parent_output);
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
auto best_idx = ArrayArgs<SplitInfo>::ArgMax(bests);
*split = bests[best_idx];
}
} // namespace LightGBM