Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[python-package] inconsistent prediction result after dumping model #5096

Closed
wangmn93 opened this issue Mar 26, 2022 · 8 comments
Closed

[python-package] inconsistent prediction result after dumping model #5096

wangmn93 opened this issue Mar 26, 2022 · 8 comments

Comments

@wangmn93
Copy link

I train the model as code below

booster = lgb.train(params={ ... }, train_set=train_set, keep_training_booster=True)
pred = booster.predict(X_test)

booster0.free_dataset()
lgb.save_model('...')
booster2 = Booster(model_file='...')
pred2 = booster2.predict(X_test)

A small part of the value in pred is different from those in pred2.
I find that there is some inf threshold in booster0 and these thresholds become 0 after dumping the model.

@jameslamb
Copy link
Collaborator

Thanks for using LightGBM and for writing this up. To help maintainers give you an informative answer, can you please provide some of the information that was asked for in the issue template?

  • what version of lightgbm are you using? whaat commands did you use to install it?
  • can you provide a minimal, reproducible example that replicates the behavior?

Details like that would reduce the effort needed to investigate this issue, thank you.

@jameslamb jameslamb changed the title inconsistent prediction result after dumping model [python-package] inconsistent prediction result after dumping model Mar 26, 2022
@jameslamb
Copy link
Collaborator

linking possibly-related conversation #4681

@wangmn93
Copy link
Author

I have checked the dumped model file. The threshold is inf in the model file but after I load it into booster, it became 0. I also test pickle, the problem is the same. Any easy way to fix this behavior?

booster = lgb.train(params={ ... }, train_set=train_set, keep_training_booster=True)
pred = booster.predict(X_test)
booster.free_dataset()

lgb.save_model('model.txt') # inf threshold in model.txt
booster2 = Booster(model_file='model.txt') # inf threshold is converted to 0

s = booster.model_to_string() # inf thresholds is converted to 0 

s = pickle.dumps(booster) # inf threshold in binary outputs
booster2 = pickle.loads(s) # inf thresholds is converted to 0 

@jameslamb
Copy link
Collaborator

We'll be happy to help if you can provide the information I asked for above. Otherwise, you will have to wait until a maintainer has the time to try to figure a combination of LightGBM version + data + code which reproduces the behavior you've reported.

@wangmn93
Copy link
Author

my lightgbm version is 3.1.1.99. The data is quite large and i can not reproduce inf threshold on random generated data. But i can provide the model.txt with inf threshold. The threshold of 5-S1 is inf and after i load the model file into booster it become 0.

tree
version=v3
num_class=1
num_tree_per_iteration=1
label_index=0
max_feature_idx=580
objective=regression
feature_names=Column_0 Column_1 Column_2 Column_3 Column_4 Column_5 Column_6 Column_7 Column_8 Column_9 Column_10 Column_11 Column_12 Column_13 Column_14 Column_15 Column_16 Column_17 Column_18 Column_19 Column_20 Column_21 Column_22 Column_23 Column_24 Column_25 Column_26 Column_27 Column_28 Column_29 Column_30 Column_31 Column_32 Column_33 Column_34 Column_35 Column_36 Column_37 Column_38 Column_39 Column_40 Column_41 Column_42 Column_43 Column_44 Column_45 Column_46 Column_47 Column_48 Column_49 Column_50 Column_51 Column_52 Column_53 Column_54 Column_55 Column_56 Column_57 Column_58 Column_59 Column_60 Column_61 Column_62 Column_63 Column_64 Column_65 Column_66 Column_67 Column_68 Column_69 Column_70 Column_71 Column_72 Column_73 Column_74 Column_75 Column_76 Column_77 Column_78 Column_79 Column_80 Column_81 Column_82 Column_83 Column_84 Column_85 Column_86 Column_87 Column_88 Column_89 Column_90 Column_91 Column_92 Column_93 Column_94 Column_95 Column_96 Column_97 Column_98 Column_99 Column_100 Column_101 Column_102 Column_103 Column_104 Column_105 Column_106 Column_107 Column_108 Column_109 Column_110 Column_111 Column_112 Column_113 Column_114 Column_115 Column_116 Column_117 Column_118 Column_119 Column_120 Column_121 Column_122 Column_123 Column_124 Column_125 Column_126 Column_127 Column_128 Column_129 Column_130 Column_131 Column_132 Column_133 Column_134 Column_135 Column_136 Column_137 Column_138 Column_139 Column_140 Column_141 Column_142 Column_143 Column_144 Column_145 Column_146 Column_147 Column_148 Column_149 Column_150 Column_151 Column_152 Column_153 Column_154 Column_155 Column_156 Column_157 Column_158 Column_159 Column_160 Column_161 Column_162 Column_163 Column_164 Column_165 Column_166 Column_167 Column_168 Column_169 Column_170 Column_171 Column_172 Column_173 Column_174 Column_175 Column_176 Column_177 Column_178 Column_179 Column_180 Column_181 Column_182 Column_183 Column_184 Column_185 Column_186 Column_187 Column_188 Column_189 Column_190 Column_191 Column_192 Column_193 Column_194 Column_195 Column_196 Column_197 Column_198 Column_199 Column_200 Column_201 Column_202 Column_203 Column_204 Column_205 Column_206 Column_207 Column_208 Column_209 Column_210 Column_211 Column_212 Column_213 Column_214 Column_215 Column_216 Column_217 Column_218 Column_219 Column_220 Column_221 Column_222 Column_223 Column_224 Column_225 Column_226 Column_227 Column_228 Column_229 Column_230 Column_231 Column_232 Column_233 Column_234 Column_235 Column_236 Column_237 Column_238 Column_239 Column_240 Column_241 Column_242 Column_243 Column_244 Column_245 Column_246 Column_247 Column_248 Column_249 Column_250 Column_251 Column_252 Column_253 Column_254 Column_255 Column_256 Column_257 Column_258 Column_259 Column_260 Column_261 Column_262 Column_263 Column_264 Column_265 Column_266 Column_267 Column_268 Column_269 Column_270 Column_271 Column_272 Column_273 Column_274 Column_275 Column_276 Column_277 Column_278 Column_279 Column_280 Column_281 Column_282 Column_283 Column_284 Column_285 Column_286 Column_287 Column_288 Column_289 Column_290 Column_291 Column_292 Column_293 Column_294 Column_295 Column_296 Column_297 Column_298 Column_299 Column_300 Column_301 Column_302 Column_303 Column_304 Column_305 Column_306 Column_307 Column_308 Column_309 Column_310 Column_311 Column_312 Column_313 Column_314 Column_315 Column_316 Column_317 Column_318 Column_319 Column_320 Column_321 Column_322 Column_323 Column_324 Column_325 Column_326 Column_327 Column_328 Column_329 Column_330 Column_331 Column_332 Column_333 Column_334 Column_335 Column_336 Column_337 Column_338 Column_339 Column_340 Column_341 Column_342 Column_343 Column_344 Column_345 Column_346 Column_347 Column_348 Column_349 Column_350 Column_351 Column_352 Column_353 Column_354 Column_355 Column_356 Column_357 Column_358 Column_359 Column_360 Column_361 Column_362 Column_363 Column_364 Column_365 Column_366 Column_367 Column_368 Column_369 Column_370 Column_371 Column_372 Column_373 Column_374 Column_375 Column_376 Column_377 Column_378 Column_379 Column_380 Column_381 Column_382 Column_383 Column_384 Column_385 Column_386 Column_387 Column_388 Column_389 Column_390 Column_391 Column_392 Column_393 Column_394 Column_395 Column_396 Column_397 Column_398 Column_399 Column_400 Column_401 Column_402 Column_403 Column_404 Column_405 Column_406 Column_407 Column_408 Column_409 Column_410 Column_411 Column_412 Column_413 Column_414 Column_415 Column_416 Column_417 Column_418 Column_419 Column_420 Column_421 Column_422 Column_423 Column_424 Column_425 Column_426 Column_427 Column_428 Column_429 Column_430 Column_431 Column_432 Column_433 Column_434 Column_435 Column_436 Column_437 Column_438 Column_439 Column_440 Column_441 Column_442 Column_443 Column_444 Column_445 Column_446 Column_447 Column_448 Column_449 Column_450 Column_451 Column_452 Column_453 Column_454 Column_455 Column_456 Column_457 Column_458 Column_459 Column_460 Column_461 Column_462 Column_463 Column_464 Column_465 Column_466 Column_467 Column_468 Column_469 Column_470 Column_471 Column_472 Column_473 Column_474 Column_475 Column_476 Column_477 Column_478 Column_479 Column_480 Column_481 Column_482 Column_483 Column_484 Column_485 Column_486 Column_487 Column_488 Column_489 Column_490 Column_491 Column_492 Column_493 Column_494 Column_495 Column_496 Column_497 Column_498 Column_499 Column_500 Column_501 Column_502 Column_503 Column_504 Column_505 Column_506 Column_507 Column_508 Column_509 Column_510 Column_511 Column_512 Column_513 Column_514 Column_515 Column_516 Column_517 Column_518 Column_519 Column_520 Column_521 Column_522 Column_523 Column_524 Column_525 Column_526 Column_527 Column_528 Column_529 Column_530 Column_531 Column_532 Column_533 Column_534 Column_535 Column_536 Column_537 Column_538 Column_539 Column_540 Column_541 Column_542 Column_543 Column_544 Column_545 Column_546 Column_547 Column_548 Column_549 Column_550 Column_551 Column_552 Column_553 Column_554 Column_555 Column_556 Column_557 Column_558 Column_559 Column_560 Column_561 Column_562 Column_563 Column_564 Column_565 Column_566 Column_567 Column_568 Column_569 Column_570 Column_571 Column_572 Column_573 Column_574 Column_575 Column_576 Column_577 Column_578 Column_579 Column_580
feature_infos=[0.056002389639616013:280359.375] [0:57.238853454589844] [1:35] [-8867526656:1010081792] [1:8.1111106872558594] [-7.26763916015625:7.1033535003662109] [-13.36737060546875:81.471694946289062] [3.4061642395499803e-13:0.99979674816131592] [-7.3957719802856445:6.8799500465393066] [-553.74237060546875:100] [0:100] [-26968.751953125:54292.0546875] [0:84.800979614257812] [0:0.82570129632949829] [0.12328767776489258:2.7411065101623535] [-24.296297073364258:113.45999908447266] [0:2.1584889888763428] [-2.6649236679077148:2.6649608612060547] [-52931.9765625:43059.19921875] [0:13761.8095703125] [0:601.54986572265625] [-5107.33154296875:28235.048828125] [-142837.6875:213662.40625] [-5.8853445053100586:7.9600353240966797] [0:1] [2.5:100] [-0.34007135033607483:0.83286988735198975] [0:4.3866209983825684] [-16787.123046875:7264.4873046875] [0:0.89999997615814209] [0:2.2360680103302002] [-0.11182750761508942:2.1705706119537354] [0:11438.986328125] [-2.8411750793457031:108.34518432617188] [-15.567475318908691:238.15460205078125] [-2.1906864643096924:49.833606719970703] [0:4.3362884521484375] [-947.629150390625:100] [0.20829758048057556:1.9920659065246582] [0:0.87350386381149292] [0:2.1176910400390625] [-5502.72119140625:3999.47412109375] [-1:1] [0.12328767776489258:2.9911668300628662] [-0.64618855714797974:0.56335228681564331] [0:2.5] [-0.99038010835647583:0.97527390718460083] [0:8545.0263671875] [0.05000000074505806:0.92500001192092896] [0:9166.0546875] [3.573298454284668e-05:171.8638916015625] [-7.9549555778503418:5.2839102745056152] [-0.27096566557884216:2.3402810096740723] [-36.474876403808594:38.752670288085938] [0.035932622849941254:1.129315972328186] [-0.14413651823997498:0.15979421138763428] [0:2.2447304725646973] [0:1] [0.026583686470985413:4.4765872955322266] [-24.296215057373047:24.292533874511719] [-0.23499999940395355:0.82961541414260864] [0:2.1606311798095703] [-1696.21875:422.00601196289062] [0:9] [0:1.6244988441467285] [0:1.1509313583374023] [0.72942662239074707:9.1801204681396484] [-5226.57470703125:36836.6953125] [-2299416543232:2244318330880] [-1645095.125:17227732] [-207.47952270507812:5.4327301979064941] [0:634.47039794921875] [-90:90] [-50.000003814697266:90] [0:1] [-1815.69091796875:3513.201416015625] [-3.565929651260376:8.1555929183959961] [1.2575718244534073e-10:0.99988752603530884] [0:0.97500002384185791] [0:25539.048828125] [-19.234823226928711:12.456794738769531] [0.013928532600402832:107.27987670898438] [0.0081868767738342285:1163.7896728515625] [-1.8875932693481445:52.577018737792969] [-1:1] [0:2.2360680103302002] [-3980816128:4809781760] [0:1] [0.026484215632081032:5.081489086151123] [0:10832062] [0.12328767776489258:3.2105457782745361] [-0.003533671610057354:0.015796072781085968] [0:1888.251953125] [-0.99318480491638184:1.1936430931091309] [-110.15982055664062:236.40950012207031] [0:21.043649673461914] [10:100] [0.026298044249415398:7.5395388603210449] [0:100] [-155.7122802734375:14.569730758666992] [-475678734548992:1907991842390016] [-625355712:435575520] [0:3.2562732696533203] [2.5:100] [1.7105095118097324e-10:0.99512398242950439] [-10:27.112462997436523] [0:191553.359375] [2.5:100] [-1:1] [-1:1] [0.16666670143604279:7.0000004768371582] [-0.66512322425842285:0.92022663354873657] [-2.1622552871704102:0.84902358055114746] [-665.28314208984375:144.97959899902344] [-901.987060546875:972.93157958984375] [0:2.8422648906707764] [-21.600435256958008:30.919387817382812] [-3.5851261615753174:24.905996322631836] [5.907496714030458e-13:0.97852581739425659] [-0.89888119697570801:0.89351344108581543] [-158.10516357421875:122.75943756103516] [6.7572503148483065e-11:0.93909764289855957] [-0.83439236879348755:3.5599715709686279] [4.4247760772705078:100] [0:184.52944946289062] [-22568.689453125:12788641] [0.02500000037252903:2.0133333206176758] [0.026298044249415398:8.4878616333007812] [0:2.5] [-35.555263519287109:42.017585754394531] [-10.413965225219727:133.04344177246094] [0:1.0072511672846647e+19] [-237.4659423828125:237.4659423828125] [0:2.0429823398590088] [0:87198.640625] [-0.0023041332606226206:0.0022672172635793686] [0:3589.3369140625] [2.5000035762786865:97.5] [-0.83739316463470459:3.3062338829040527] [0:0.44999998807907104] [-1.7898576259613037:0.27531746029853821] [0:1] [0:1] [-100:100] [-126.73699188232422:238.87527465820312] [0.00027407705783843994:258.40383911132812] [-43251984:77.087905883789062] [0:2.5] [0.00028153153834864497:1.9184427261352539] [-0.93354260921478271:1.0751088857650757] [-2116.36181640625:244.05068969726562] [-1:1] [0:1] [-104.94549560546875:320] [-517.19293212890625:100] [0:0.89999997615814209] [-4120.0400390625:39264.67578125] [-1.8094564933055283e+17:145392.46875] [10.000001907348633:90] [-2.6666667461395264:2.6666667461395264] [5.6401550097007203e-12:0.96335572004318237] [-326.7164306640625:68.629486083984375] [-64.473686218261719:63.623188018798828] [0:1] [-0.68792545795440674:0.97383356094360352] [0:0.52425569295883179] [0.01521295215934515:6.0848698616027832] [0:3.1314227498502324e+19] [-0.016330234706401825:0.012674049474298954] [0:18700.62109375] [1.4952594717954071e-11:0.99912285804748535] [-4653299712:2607068672] [-1945.2744140625:355.45098876953125] [3.1694646906998969e-12:0.99834340810775757] [0:1.9855562448501587] [0:2.2360680103302002] [0.54798883199691772:187935.5625] [2.5:100] [-41.950325012207031:174.03524780273438] [0.31622773408889771:880226.4375] [-7.9976530075073242:7.9998764991760254] [-2397.989013671875:200] [0.26666936278343201:13199.3603515625] [-11876.5419921875:2230.3955078125] [0:4.2049722671508789] [-58.892917633056641:42.774311065673828] [-3.2825005054473877:1.5549775362014771] [0.31622776389122009:569.18017578125] [-2.6666667461395264:2.6666667461395264] [-2746483968:2669516288] [-23.664222717285156:123.17971801757812] [-0.10234113782644272:0.18222333490848541] [0:122.04540252685547] [0:8] [-4533.197265625:12759.4521484375] [-625355712:435575520] [-19.842657089233398:264.70162963867188] [0:0.69999998807907104] [0:12.852670669555664] [0:2.1565279960632324] [0:4.4721360206604004] [-0.95038169622421265:0.53089618682861328] [-2082.891357421875:4601.625] [-39.9998779296875:15844837] [-257.3148193359375:255.48942565917969] [0.0014160870341584086:1.7731441259384155] [-40:48085800] [0:1.0023988485336304] [2.5:100] [-1:0.99953961372375488] [0.1246199905872345:3.6243329048156738] [-4.4036092758178711:5.2293543815612793] [0:160.06723022460938] [-1149128192:721778624] [0:37] [0:1740.9595947265625] [-0.22575640678405762:0.96181869506835938] [0:4.4920711517333984] [-3.4882729053497314:7.917931079864502] [7.8504621590639359e-17:0.70725572109222412] [-0.71788781881332397:2.0247504711151123] [0:1.4472702741622925] [-3.3235349655151367:6.3060832023620605] [0:591.1922607421875] [0:2.4180293083190918] [0:468.94064331054688] [0.026298057287931442:5.4091553688049316] [-78973.1015625:9244.5673828125] [0:200] [-0.99014776945114136:0.99502485990524292] [0.0059159398078918457:203.14869689941406] [0.12328767776489258:3.3635914325714111] [0:2.3145127296447754] [-1.0049943923950195:1.6879253387451172] [-3564.870849609375:6007.25537109375] [0:1.9047620296478271] [-1799.7442626953125:210.00132751464844] [-0.88003897666931152:1.7743637561798096] [10.000001907348633:90] [-1.4588860273361206:1.3847768306732178] [2:38] [0:3.0870490074157715] [0.02634163573384285:3.5882768630981445] [0:1] [-138.89372253417969:19.554899215698242] [0:27410.798828125] [-864.10235595703125:200] [-0.2985495924949646:0.82164043188095093] [-78.289474487304688:73.879997253417969] [-4520124928:6013857792] [0:2.0402851104736328] [0:3.9131636619567871] [-3345465856:4580129792] [0:1.6372631788253784] [-6.3250541687011719:0.00046966236550360918] [-10:10] [1.1462830684649816e-11:0.99977731704711914] [0:2.2363090515136719] [0:25.058843612670898] [0.0034120210912078619:23044.380859375] [-27657167024685056:371.21035766601562] [-58.752132415771484:1.5112706422805786] [-1.2236497402191162:0.78269892930984497] [-0.52547287940979004:0.4376072883605957] [2.5:100] [0:4.372556209564209] [-49.440616607666016:49.826004028320312] [0:4.4679422378540039] [0:179975.109375] [0:0.35409814119338989] [0:2.0346028804779053] [-2666652416:3169749760] [-0.86151164770126343:0.99990808963775635] [0:0.89999997615814209] [0:4.2938179969787598] [0.00082850042963400483:1.99647057056427] [-88642.046875:100] [0:2.2268991470336914] [0:3.187725305557251] [0:0.89999997615814209] [2.5:100] [-2.2204460492503131e-16:0.9973524808883667] [9.0338289737701416e-07:169.14349365234375] [-0.043043393641710281:0.0050210556946694851] [0.31622773408889771:119563.53125] [-25.549617767333984:148.01231384277344] [-10.460600852966309:17.131555557250977] [-0.0054745604284107685:4.0315089225769043] [-13.482419013977051:16.500665664672852] [-128328.4921875:97993.0703125] [0:2.2660222053527832] [0:2.2472991943359375] [-38344.37890625:23773.900390625] [0:0.031413998454809189] [-509842.0625:36176.703125] [0:0.80000001192092896] [-1:1] [-0.41062656044960022:1.3483963012695312] [0.02630152553319931:4.0069890022277832] [0:9] [0:1] [-3107.708740234375:100] [0:0.22568422555923462] [-2097939.5:344581.15625] [0:2.214425802230835] [-1.059251070022583:0.63227939605712891] [0:407843.3125] [-0.092444881796836853:0.12428891658782959] [-268002.625:1211.608154296875] [0:5436.4443359375] [-1275527.5:4774531.5] [0.0053102290257811546:1.9994266033172607] [2.5:100] [0:0.97500002384185791] [-231.37199401855469:745.7244873046875] [0:100] [1.2652374505996704:38.025642395019531] [4.0046870708465576e-08:1.1134363412857056] [1.8990364836213303e-12:0.98903071880340576] [-113.76302337646484:114.28727722167969] [0:1.6666667461395264] [0.00433302391320467:1.9281582832336426] [0.026298094540834427:4.4061040878295898] [-1:0.51949393749237061] [0:0.89999997615814209] [0:100] [-16239.9501953125:16463.970703125] [-78.368911743164062:408.39910888671875] [0:2.2360680103302002] [0:0.99992513656616211] [2.1755695343017578e-06:4.5820326805114746] [-4.1228446960449219:51.471019744873047] [0:91.291534423828125] [0:200513.96875] [-2.2800774574279785:2.6666667461395264] [0:207.57447814941406] [0.026299135759472847:3.8722882270812988] [-38270.91796875:23857.056640625] [0.026301164180040359:3.3886032104492188] [0:1] [0.086131662130355835:164332.84375] [0:2.2360677719116211] [0:0.89999997615814209] [-1:1] [0:36.504638671875] [-1994481.375:1220108.5] [0:376.8135986328125] [0:7.9999985694885254] [0:0.0081613175570964813] [-416.75778198242188:256.24114990234375] [0:5] [-484.44708251953125:484.51718139648438] [-97.5:97.5] [-4647806828544:9.6203145980834961] [0:2458.579833984375] [0:3.9554030895233154] [-82.828948974609375:90.699996948242188] [-27.671482086181641:302.81375122070312] [-1:1] [0:2.6362779140472412] [0:2.7828238010406494] [0.12336704879999161:4.076448917388916] [-1.6595782041549683:2.1852023601531982] [-40:47.026882171630859] [-165.33869934082031:15030.1328125] [-2.6666667461395264:2.6666667461395264] [-5107389440:3662733056] [0:215.46385192871094] [-79.107139587402344:78.225807189941406] [-32.089344024658203:13.639827728271484] [0:1.6151955127716064] [-0.00021214822481852025:6.3253316879272461] [-0.35193875432014465:0.46556633710861206] [-6.0920820236206055:5.8483257293701172] [2.5:100] [2.5:100] [-38.273948669433594:104996880384] [-1348.5372314453125:100] [-1.8914116621017456:0.62883573770523071] [0:17.921295166015625] [-23270.55859375:60387.63671875] [-100:100] [1.0390433073043823:38.025642395019531] [-1.1166545152664185:1.8745880126953125] [-0.97222220897674561:0.99386501312255859] [-684.25128173828125:119.08781433105469] [0:2.0107889175415039] [0:15.587624549865723] [-389.26922607421875:868.2489013671875] [0.026298044249415398:4.3160037994384766] [1.0509934425354004:8.1111106872558594] [0.00079750583972781897:28405.107421875] [-328.03237915039062:5.4291601181030273] [-3264390400:2607068672] [-142.17964172363281:39.640335083007812] [-0.96106451749801636:0.98956978321075439] [0.12328767776489258:2.6064026355743408] [-6.1664414405822754:4.6998071670532227] [-30.105108261108398:39.332046508789062] [0:50553.796875] [-159.99920654296875:259.99942016601562] [-6.3300704956054688:0.0039514335803687572] [2.5:100] [-1.9893710613250732:4.234708309173584] [0:39] [-3568317759488:4.038050651550293] [0.15811388194561005:37514996] [0:192.64945983886719] [-51.853790283203125:4.6040558815002441] [0:2.7447075843811035] [0:28051646464] [0:4.4721360206604004] [-417492.71875:41004.515625] [5.0056625511274433e-12:0.96292537450790405] [0:6] [-0.95105063915252686:16.109750747680664] [0.00032113079214468598:79810.1171875] [-179.94403076171875:115.69546508789062] [-1941.328125:3762.412109375] [-625355712:435575520] [3.7252902984619141e-09:0.35355338454246521] [0:1] [0:1.872225284576416] [-5074387:0] [0:308.99179077148438] [-0.002736478578299284:0.0034877264406532049] [0:895145.375] [0:1.0030540227890015] [-6193394688:2526154752] [2.5:100] [0:2.842181921005249] [-0.0072286715731024742:0.0053208218887448311] [-3.1159744262695312:-0.084003902971744537] [-3.0468785762786865:40] [-2.6666667461395264:2.6666667461395264] [-46.273246765136719:61.022792816162109] [-2.6666667461395264:2.6666667461395264] [-90:90] [0:8995342336] [0:1] [-185.39991760253906:3.3976929187774658] [0:1] [0.62587815523147583:1395.40625] [-63.946281433105469:97.181907653808594] [-289158874529792:307227969716224] [-0.81530451774597168:3.0841531753540039] [-0.45704770088195801:0.50113248825073242] [-533.2449951171875:1439.1571044921875] [0.53865885734558105:40] [-100:100] [0:2.2228569984436035] [-0.045614913105964661:0.0047426456585526466] [-6.3252296447753906:0.0005076680681668222] [-159.73056030273438:259.95010375976562] [-0.77613365650177002:1.286952018737793] [-420.72210693359375:24.428886413574219] [0:1] [-1.3894162178039551:0.81027048826217651] [0:2.0851266384124756] [0.044751286506652832:440.31353759765625] [0.31622776389122009:11998.9697265625] [-1:1] [-15.040531158447266:40] [-2.6666667461395264:2.6666667461395264] [2.5:100] [0.025509493425488472:636.82269287109375] [0:39] [-0.67310881614685059:1.0750465393066406] [-1:1] [-2.6666667461395264:2.6666667461395264] [-7.627626895904541:1409.0601806640625] [-29.541261672973633:120.18184661865234] [0:0.33734914660453796] [-24.296297073364258:24.296297073364258] [-1:0.51949393749237061] [-26.841861724853516:63.463111877441406] [-4.4925589561462402:25.254251480102539] [10.000001907348633:90] [0:4.3870930671691895] [0.0094237532466650009:89161.2109375] [-698.66046142578125:57.898323059082031] [10:100] [0:1] [-2.6666667461395264:2.6666667461395264] [-1891.1552734375:100] [0:42429.7421875] [-39537396:1] [-2747538432:1754416640] [-5.9597620964050293:108.78427886962891] [-0.92500001192092896:0.97500002384185791] [6.7497937984327058e-22:6.2507876309638843e-16] [-9843.9189453125:2334.6025390625] [0:0.92813277244567871] [-3.9618320465087891:6.4568967819213867] [-752363.0625:4221630.5] [0.019541790708899498:2.3903825283050537] [-11155.0234375:14689.328125] [0.10000000149011612:0.89999997615814209] [-0.87532943487167358:3.3650205135345459] [-1:1] [-201.33319091796875:2931.226318359375] [0:1.7622629404067993] [-159.59037780761719:165.22514343261719] [-0.01040318701416254:0.012939967215061188] [-1.1717473268508911:1.4613844156265259] [-46.140335083007812:52.839462280273438] [-6.2883496284484863:48.902194976806641] [0.12328767776489258:2.601750373840332] [0:2.888932466506958] [0:13.908378601074219] [0:0.89999997615814209] [2.5:100] [0:1587.885986328125] [0:2.6055474281311035] [0:29707.3671875] [-0.042809557169675827:0.082547731697559357] [-690.43310546875:4735.3095703125] [-6.0848698616027832:6.0848698616027832] [-0.36938542127609253:0.39224675297737122] [0:2.6922883987426758] [-3.5057222843170166:165.05044555664062] [0:2.2265160083770752] [0:17.062957763671875] [0.59038794040679932:9.0264368057250977] [-90.925239562988281:123.92162322998047] [-1.1386580467224121:1.805412769317627] [0.20204277336597443:1.9880661964416504] [-6.1427173614501953:13.20836353302002] [0.026831842958927155:4.0771846771240234] [3.7252902984619141e-09:1.2362052202224731] [-7921.9189453125:5912.01708984375] [-0.55688583850860596:0.70269781351089478] [-6.0848698616027832:6.0848698616027832] [0:0.016381556168198586] [0:100] [0.0087798964232206345:1.8297204971313477] [-10.034219741821289:12.905673027038574] [-0.95999997854232788:0.98969072103500366] [0:2.556976318359375] [-21.077735900878906:21.330888748168945] [-235.71286010742188:2320.043212890625] [-5.2535481452941895:5.8749375343322754] [-2.8460497856140137:2.8460497856140137] [-3249903616:5004161024] [0:1] [0:1145.70068359375] [0.96884244680404663:8.7809181213378906] [5.5511151231257827e-16:7.5449609756469727] [0.049442995339632034:3.4930009841918945] [0:2.394843578338623] [0:1] [-0.88965374231338501:0.72694593667984009] [-5994.64697265625:11060.2119140625] [-1.1983017921447754:1.857745885848999] [0.70710676908493042:14829104] [0:5] [0.20170505344867706:1.3226227760314941] [-0.66214913129806519:0.1115230992436409] [0.6468309760093689:9.1716604232788086] [0:2.2442188262939453] [0.024999998509883881:7.1027317047119141] [-149.314208984375:157.93670654296875] [-1278.800048828125:100] [-0.0090529322624206543:0.0009142756462097168] [0.026298044249415398:12.449076652526855] [-73.19085693359375:95.196220397949219] [-0.67156755924224854:2.7469723224639893] [-1.2200020551681519:2.0071995258331299] [-0.45703950524330139:0.70725488662719727] [-0.55948477983474731:0.42023676633834839] [-1.3309222459793091:0.97992384433746338] [-8220910080:9811064832] [-620.54852294921875:3380.14208984375] [-57.359420776367188:44.914871215820312] [0:1] [-0.46052145957946777:1.659914493560791] [0.12335649877786636:3.4006524085998535] [-1:1] [2.5:100] [0.12328767776489258:4.2477025985717773] [-1:1]
tree_sizes=2442 2462 2782 3056 2832 2643

Tree=0
num_leaves=23
num_cat=0
split_feature=186 552 552 44 186 301 425 301 303 35 293 483 186 44 26 293 109 44 303 104 303 283
split_gain=1.95326 0.709388 0.643568 0.38058 0.343073 0.259217 0.187685 0.178422 0.176826 0.147953 0.124205 0.123286 0.115751 0.112497 0.154121 0.103181 0.0985993 0.0855642 0.0795326 0.0648614 0.0566696 0.0305882
threshold=0.035965638235211379 -0.44700069725513453 -0.86545768380165089 -0.006856220541521906 -0.00022209953749552366 9.2785692214965838 0.00017309080431004989 5.6833825111389169 0.016655030660331253 0.060611288994550712 0.0011334993760101499 -0.85114726424217213 -0.028625074774026867 0.017924294807016853 0.093791849911212935 0.00044357827573549008 0.56358847022056591 -0.027640832588076588 0.03279270417988301 0.087696813046932234 0.03279270417988301 -0.0001802317128749564
decision_type=2 10 10 10 2 10 2 10 10 10 8 10 2 10 2 8 10 10 8 10 10 2
left_child=1 3 7 10 13 18 9 17 12 -6 20 -8 -5 15 -15 -3 -10 -2 19 -4 -1 -20
right_child=2 4 5 8 6 -7 11 -9 16 -11 -12 -13 -14 14 -16 -17 -18 -19 21 -21 -22 -23
leaf_value=-0.0058203229469957285 -0.021678618755664639 0.0011987145293541534 -0.0087118486949587168 0.0049074022487778715 0.00016992883692220384 -0.018053214424527394 -0.0094312373953554796 -0.030745686132284837 -0.010750898014379182 -0.0025186134934896648 -0.015414097724202708 -0.0018937601864296987 -0.0015843465276220538 0.0030264767251427472 0.01585399845741688 -0.00067587872586643259 -0.00041058873698103396 -0.009596353464532751 -0.014757968987529466 -0.0032421266244749818 -0.012244553207108703 -0.0069457672352870245
leaf_weight=9442 1357 330430 2882 3039 368771 1889 2335 1360 3132 21671 1994 32497 28070 11448 1026 32155 1336 1103 1158 9268 1652 1004
leaf_count=9442 1357 330430 2882 3039 368771 1889 2335 1360 3132 21671 1994 32497 28070 11448 1026 32155 1336 1103 1158 9268 1652 1004
internal_value=3.96285e-06 0.000211418 -0.00978164 -0.0034953 0.000436933 -0.0070194 -0.00017772 -0.0214704 -0.00179552 2.04485e-05 -0.00810813 -0.00240191 -0.000946961 0.00113415 0.00408957 0.00103219 -0.00768137 -0.0163019 -0.0055561 -0.00454778 -0.00678596 -0.0111764
internal_weight=0 848998 20021 48665 800333 16201 425274 3820 35577 390442 13088 34832 31109 375059 12474 362585 4468 2460 14312 12150 11094 2162
internal_count=869019 848998 20021 48665 800333 16201 425274 3820 35577 390442 13088 34832 31109 375059 12474 362585 4468 2460 14312 12150 11094 2162
is_linear=0
shrinkage=1


Tree=1
num_leaves=23
num_cat=0
split_feature=293 103 151 145 146 109 146 302 302 309 436 239 544 455 455 309 35 455 185 221 323 407
split_gain=0.282512 0.241839 0.205099 0.126588 0.117638 0.117516 0.158755 0.218569 0.139078 0.0994297 0.0734258 0.0721767 0.0517061 0.0505695 0.0481322 0.046282 0.0416846 0.0385934 0.037909 0.0376162 0.0323071 0.0170316
threshold=0.0011334993760101499 6.25000023841858 0.76137885451316845 0.33762136101722723 -0.038412932306528084 0.79587480425834667 -0.02396017778664827 1.0000000180025095e-35 0.090119142085313811 0.0070397499948740014 0.099326010793447508 0.79502061009407055 0.75000000000000011 -0.0004615206853486597 -0.057033441960811608 0.0042475145310163507 -0.0094619188457727415 -0.0037246836582198735 -0.010639965534210203 0.36784897744655615 -0.94610458612442005 3.2412493228912358
decision_type=8 10 10 10 10 10 8 10 10 10 10 10 2 2 2 10 10 2 2 2 8 10
left_child=2 4 5 -3 -2 6 7 -1 14 12 -8 16 -5 -11 -7 -6 18 20 -4 -18 -13 -19
right_child=1 3 11 9 15 8 10 -9 -10 13 -12 17 -14 -15 -16 -17 19 21 -20 -21 -22 -23
leaf_value=-0.0061588665136272005 -0.020571993875490597 -0.011719784290178349 0.002473931346353164 -0.0051505808719891121 -0.011957742895838376 0.0027290592335893838 4.1942138841143897e-05 -8.6991789919868293e-05 0.012076995610569033 -0.00019234491965183285 -0.00075632569649830702 0.0016637910665684643 0.0013238346359678464 0.0063709846265693152 0.00041416277443482837 -0.0026391113003721967 0.00036530549552230826 0.0016686700136444394 0.00072253856357419252 -0.0018127597726286737 0.0037321957601245304 0.00014916004295441744
leaf_weight=11226 1006 1294 17408 6832 1111 10491 266317 12635 1100 8141 202806 18514 1477 1367 63808 1089 147518 15291 43572 8368 13093 14555
leaf_count=11226 1006 1294 17408 6832 1111 10491 266317 12635 1100 8141 202806 18514 1477 1367 63808 1089 147518 15291 43572 8368 13093 14555
internal_value=0 -0.00351347 9.10715e-05 -0.00215874 -0.0115579 -0.000253199 -0.000431162 -0.00294785 0.000909059 -0.00145873 -0.000302943 0.0007945 -0.00398766 0.000740772 0.000742371 -0.00739047 0.000522759 0.00175184 0.00122415 0.000247745 0.00252378 0.000931001
internal_weight=0 22317 846702 19111 3206 568383 492984 23861 75399 17817 469123 278319 8309 9508 74299 2200 216866 61453 60980 155886 31607 29846
internal_count=869019 22317 846702 19111 3206 568383 492984 23861 75399 17817 469123 278319 8309 9508 74299 2200 216866 61453 60980 155886 31607 29846
is_linear=0
shrinkage=1


Tree=2
num_leaves=27
num_cat=0
split_feature=561 557 285 293 80 557 146 575 436 343 391 436 146 55 411 15 561 343 418 198 198 571 136 187 333 80
split_gain=0.217628 0.126851 0.262749 0.3012 0.116897 0.10733 0.102196 0.0800064 0.0736184 0.0725115 0.0691517 0.059569 0.0731838 0.0512585 0.0446131 0.0410681 0.0456235 0.0353258 0.035611 0.0322103 0.0302689 0.0279051 0.0261373 0.0257172 0.0247317 0.0183513
threshold=0.12330358847975732 0.013119033537805082 11.094505310058596 0.00023556531959911811 -1.6511124372482298 -0.000679096090607345 -0.02396017778664827 -0.14834305644035337 -1.1464405655860899 inf 4.5634851455688485 -1.1464405655860899 -0.018147636204957959 0.00333882705308497 0.74857106804847728 -0.373125210404396 -0.10800873115658759 0.89396142959594738 -0.19521522521972653 6.088813543319703 5.8230023384094247 -71406799.999999985 9.2265949249267596 8.6568384170532244 12.786440849304201 -0.70486140251159657
decision_type=2 2 2 10 10 2 10 2 10 8 10 10 8 2 10 2 2 10 10 2 2 2 8 8 8 10
left_child=5 4 17 -4 6 15 10 19 -9 11 -2 12 -7 -13 -8 16 20 18 -3 -6 -1 24 -19 -23 -17 -18
right_child=1 2 3 -5 7 9 14 8 -10 -11 -12 13 -14 -15 -16 21 25 22 -20 -21 -22 23 -24 -25 -26 -27
leaf_value=0.0023996101537670333 -0.003894533517579039 -0.0015680049449484494 0.024148976652698894 0.00243007678604709 -0.0025845235455103327 -0.008709802051595 -0.0064510739622846702 -0.0031356403551282197 -0.00036584408205154339 -0.0074251608544334494 -0.015256636775307964 3.5192828408647748e-05 -0.0010807171757438896 0.00092064199419827995 -0.0010281636815020468 0.00082839976278966147 -0.0007175281904600537 -0.0045640292999721225 0.0022365229860331418 0 0.0053280464237418597 9.3902216519445544e-05 0.00094321711591886044 0.0013324396947257315 -0.0031077125779265043 0.0014742406517289808
leaf_weight=14744 1026 3331 1069 1615 26335 1417 2031 9924 301594 1258 1191 260845 11702 87364 6254 2993 4441 2141 9170 5983 4767 24722 1399 53291 3348 25064
leaf_count=14744 1026 3331 1069 1615 26335 1417 2031 9924 301594 1258 1191 260845 11702 87364 6254 2993 4441 2141 9170 5983 4767 24722 1399 53291 3348 25064
internal_value=0 -0.000576652 0.00195854 0.0111177 -0.000710906 0.000434368 -0.00399912 -0.000610182 -0.000454402 0.000151913 -0.0100435 0.00017857 -0.00191237 0.000257635 -0.00236962 0.00120151 0.00193085 0.000419791 0.00121477 -0.00210867 0.00312022 0.000776528 -0.00235933 0.000941234 -0.00123407 0.00114095
internal_weight=0 373063 18725 2684 354338 495956 10502 343836 311518 362586 2217 361328 13119 348209 8285 133370 49016 16041 12501 32318 19511 84354 3540 78013 6341 29505
internal_count=869019 373063 18725 2684 354338 495956 10502 343836 311518 362586 2217 361328 13119 348209 8285 133370 49016 16041 12501 32318 19511 84354 3540 78013 6341 29505
is_linear=0
shrinkage=1


Tree=3
num_leaves=29
num_cat=0
split_feature=461 485 333 109 405 319 269 257 309 251 474 111 551 252 217 417 163 536 3 199 128 333 47 305 384 551 104 77
split_gain=0.164062 0.0923581 0.127324 0.10267 0.0666394 0.0953915 0.0852491 0.0505957 0.0463379 0.043908 0.0707621 0.0422755 0.0447352 0.0362969 0.035149 0.0336361 0.0323971 0.0311385 0.0343733 0.0308838 0.0306832 0.0289448 0.0286094 0.0269303 0.0250688 0.0323852 0.025486 0.0247721
threshold=0.34333519637584692 1.0014782547950747 20.38336277008057 0.95700830221176159 -1.3280685544013975 29.215785980224613 1.0000000180025095e-35 0.070396561175584807 0.0070397499948740014 0.38990040123462683 -0.28605276346206659 -0.28037942945957178 -0.50016459822654713 -24742016.999999996 0.066052794456481947 2.9879375696182255 0.45000000298023229 1.3791085481643679 -91806659.999999985 0.32432493567466741 0.72207251191139232 4.170673370361329 2.6163805723190312 0.0024557607248425488 0.79073345661163341 -0.22676773369312284 0.28525663912296301 0.5239337980747224
decision_type=10 10 8 10 8 2 10 10 10 10 8 8 8 2 10 2 2 2 2 10 8 8 8 2 2 10 10 10
left_child=4 2 16 8 5 17 -7 24 -4 10 19 20 -13 15 -5 -9 22 18 -1 -3 -11 -15 -2 -18 26 -26 -6 -19
right_child=1 9 3 14 7 6 -8 13 -10 11 -12 12 -14 21 -16 -17 23 27 -20 -21 -22 -23 -24 -25 25 -27 -28 -29
leaf_value=-0.0046512046357870202 -0.0023944332982528157 0.0019192119833549648 0.00051718311159950801 0.0052552097569850487 -0.00060314449150188998 -0.013546025399386548 -0.0012088067097138409 -0.003007443561392634 0.0030604786796822026 -0.00028428285641113397 -0.0069044304038315824 0.00056321914761233403 -0.00036346657501164583 -0.00022601522978497171 0.013587532494836751 0.00040092101486686457 0.00024293718068578234 -0.00073107821999732897 -0.0012062751566093012 0.00052540027398476985 0.0012733905432903768 -0.0011390428502821557 0.00094592817847356369 0.0023364637004578098 0.0023283155915498426 -0.0015158485241219474 0.00014985977597335376 0.0039623252178119794
leaf_weight=4293 7370 25101 10275 1065 73950 1320 1006 12632 24456 18069 1139 69502 207496 74998 1069 3692 27804 4503 9280 44155 41411 65199 3880 7941 8758 2890 114273 1492
leaf_count=4293 7370 25101 10275 1065 73950 1320 1006 12632 24456 18069 1139 69502 207496 74998 1069 3692 27804 4503 9280 44155 41411 65199 3880 7941 8758 2890 114273 1492
internal_value=0 0.000381157 0.00133693 0.00272841 -0.00049521 -0.00218959 -0.00825314 -0.000390839 0.00231094 0.000183919 0.000902181 3.33533e-05 -0.000130589 -0.000816663 0.00947604 -0.00223045 0.000243254 -0.00146372 -0.00230324 0.00103201 0.000798515 -0.000651335 -0.00123349 0.000710826 -5.68718e-05 0.00136595 -0.000145453 0.000420308
internal_weight=0 490733 83860 36865 378286 21894 2326 356392 34731 406873 70395 336478 276998 156521 2134 16324 46995 19568 13573 69256 59480 140197 11250 35745 199871 11648 188223 5995
internal_count=869019 490733 83860 36865 378286 21894 2326 356392 34731 406873 70395 336478 276998 156521 2134 16324 46995 19568 13573 69256 59480 140197 11250 35745 199871 11648 188223 5995
is_linear=0
shrinkage=1


Tree=4
num_leaves=27
num_cat=0
split_feature=552 503 72 283 440 248 328 229 36 229 229 48 203 370 272 203 291 283 547 370 397 301 454 360 148 569
split_gain=0.10792 0.0759277 0.139133 0.0790207 0.0681073 0.179013 0.357063 0.130864 0.0654713 0.0537255 0.0715046 0.0579281 0.0514405 0.0512127 0.0535587 0.0508497 0.0488361 0.0400081 0.0391255 0.0386868 0.0372741 0.0448191 0.0333102 0.0317032 0.0229293 0.0186361
threshold=-0.44700069725513453 0.00085464800940826546 -45.000001907348626 -0.00027097774727735663 -0.76294767856597889 -34.624372482299798 0.85355356335639965 1.0000000180025095e-35 0.5207631289958955 0.6167445480823518 -0.15944436937570569 0.53749999403953563 -0.86058315634727467 0.043398404493927963 0.50778281688690197 -0.34959170222282404 0.96743586659431469 -0.00043896186980418855 0.29277457296848303 0.038467751815915115 -0.10256220400333403 1.0061534047126772 0.39920809864997869 0.51354387402534496 0.9915636181831361 0.013327613472938539
decision_type=10 10 10 2 10 2 10 2 8 2 2 2 10 2 10 10 10 2 8 2 10 10 2 8 2 2
left_child=1 16 -3 8 5 6 7 -2 -4 10 19 -12 -7 18 -15 -5 20 -14 -11 -6 21 -1 -22 25 -25 -18
right_child=4 2 3 15 9 12 -8 -9 -10 13 11 -13 17 14 -16 -17 23 -19 -20 -21 22 -23 -24 24 -26 -27
leaf_value=0.0047365280437444684 -0.005250041252757064 -0.011319473822323584 -0.0028030499842492521 -0.0092492113937039776 0.00067232181476672081 -0.0072493152100059875 -0.022233934982334561 0.0073060615140538212 0.0053099541652209545 0.001055006602399341 -0.0005233252118746534 0.00021535313246332508 0.0015905905827562148 0.0038261573353915363 -0.0015661691592941593 -0.00022542789495942994 -0.0012985430679073328 -0.00078287206274796556 0.006243707148342742 -0.00048912688252782512 0.0025793441340638363 0.001875182965775936 -4.8232192721411117e-05 -0.0071604278584084819 -0.00061793212976434485 0.0045087852901020027
leaf_weight=9384 3903 1212 1434 1115 143310 1117 1140 1049 3159 60882 345960 152940 8522 2122 13633 1473 1166 42139 1498 35752 8855 13576 10440 1123 1094 1021
leaf_count=9384 3903 1212 1434 1115 143310 1117 1140 1049 3159 60882 345960 152940 8522 2122 13633 1473 1166 42139 1498 35752 8855 13576 10440 1123 1094 1021
internal_value=0 0.00135516 -0.00140707 0.000252005 -9.15323e-05 -0.00113713 -0.00626618 -0.00257004 0.00275519 -1.13726e-05 -0.000101997 -0.00029668 -0.00053173 0.00077368 -0.000833544 -0.00415183 0.00185417 -0.000381643 0.00118121 0.000439865 0.00218534 0.003049 0.00115245 -0.00130059 -0.00397708 0.00136688
internal_weight=0 55052 8393 7181 813967 57870 6092 4952 4593 756097 677962 498900 51778 78135 15755 2588 46659 50661 62380 179062 42255 22960 19295 4404 2217 2187
internal_count=869019 55052 8393 7181 813967 57870 6092 4952 4593 756097 677962 498900 51778 78135 15755 2588 46659 50661 62380 179062 42255 22960 19295 4404 2217 2187
is_linear=0
shrinkage=1


Tree=5
num_leaves=25
num_cat=0
split_feature=262 531 531 302 195 38 447 168 263 470 216 412 216 531 184 262 341 412 168 407 168 28 411 499
split_gain=0.212865 0.239801 0.172132 0.178296 0.198356 0.171286 0.0882661 0.0875651 0.069456 0.069392 0.0663091 0.0592928 0.0527238 0.0554041 0.0488326 0.0427722 0.0344169 0.035263 0.0499888 0.0301498 0.0284401 0.0281868 0.0201467 0.0162257
threshold=-0.0023521824041381474 inf 0.021650986745953563 0.06286924704909326 -1115071.1874999998 0.97979199886322033 -0.17465919256210324 0.001520355115644634 0.0091941654682159441 -0.0049251774325966826 -0.0072161555290222159 -3.2200934886932369 -0.036773443222045891 0.0031694783829152588 0.072932098060846343 0.0027490713400766258 0.11459845677018167 -1.6582854986190794 0.0023223855532705788 3.3685917854309086 0.00083075687871314596 0.46257027983665472 0.74857106804847728 0.67906498908996593
decision_type=2 8 8 10 2 2 8 2 2 10 8 8 10 10 10 2 10 10 2 10 2 8 10 10
left_child=2 6 16 8 10 -6 7 15 9 -4 -5 -9 21 -14 -10 -2 20 18 -18 -19 22 -8 -1 -22
right_child=1 -3 3 4 5 -7 12 11 14 -11 -12 -13 13 -15 -16 -17 17 19 -20 -21 23 -23 -24 -25
leaf_value=0.0015749552255760787 -0.00010883008857219491 -0.015784790221213752 -0.0056150633788633157 -0.0014035208708252805 0.022894246222916605 0.0075447663011524897 -0.0021340830917236367 -0.0092672163253178907 0.0097239844315526337 0.0012209065141257779 0.0082264323440897832 -0.0026723010433928459 -0.00019162790934603246 0.00079704691567004536 0.0025439384645483086 -0.0011075334720737722 -0.00053122598698946723 -3.4577489081902206e-05 -0.006277525979411335 0.000641121672767681 0.0016267948621150137 -0.000509645485470779 0.00018583965074122377 0.005203888816701978
leaf_weight=22757 67695 1013 2035 1913 1208 1900 13210 1619 1159 5457 1130 9351 156704 88717 5655 118118 11368 110336 1757 163472 2687 57535 19624 2599
leaf_count=22757 67695 1013 2035 1913 1208 1900 13210 1619 1159 5457 1130 9351 156704 88717 5655 118118 11368 110336 1757 163472 2687 57535 19624 2599
internal_value=0 -0.000411704 0.000595116 0.00341175 0.00791778 0.0135429 -0.000381149 -0.000906985 0.00146735 -0.000622553 0.00213964 -0.00365472 -5.35508e-05 0.00016536 0.00377988 -0.000744226 0.000422612 0.000291433 -0.00130808 0.000368471 0.00121015 -0.000814385 0.000934102 0.00340448
internal_weight=0 513962 355057 20457 6151 3108 512949 196783 14306 7492 3043 10970 316166 245421 6814 185813 334600 286933 13125 273808 47667 70745 42381 5286
internal_count=869019 513962 355057 20457 6151 3108 512949 196783 14306 7492 3043 10970 316166 245421 6814 185813 334600 286933 13125 273808 47667 70745 42381 5286
is_linear=0
shrinkage=1


end of trees

feature_importances:
Column_146=4
Column_293=4
Column_44=3
Column_109=3
Column_168=3
Column_186=3
Column_229=3
Column_283=3
Column_301=3
Column_302=3
Column_303=3
Column_309=3
Column_333=3
Column_436=3
Column_455=3
Column_531=3
Column_552=3
Column_35=2
Column_80=2
Column_104=2
Column_198=2
Column_203=2
Column_216=2
Column_262=2
Column_343=2
Column_370=2
Column_407=2
Column_411=2
Column_412=2
Column_551=2
Column_557=2
Column_561=2
Column_3=1
Column_15=1
Column_26=1
Column_28=1
Column_36=1
Column_38=1
Column_47=1
Column_48=1
Column_55=1
Column_72=1
Column_77=1
Column_103=1
Column_111=1
Column_128=1
Column_136=1
Column_145=1
Column_148=1
Column_151=1
Column_163=1
Column_184=1
Column_185=1
Column_187=1
Column_195=1
Column_199=1
Column_217=1
Column_221=1
Column_239=1
Column_248=1
Column_251=1
Column_252=1
Column_257=1
Column_263=1
Column_269=1
Column_272=1
Column_285=1
Column_291=1
Column_305=1
Column_319=1
Column_323=1
Column_328=1
Column_341=1
Column_360=1
Column_384=1
Column_391=1
Column_397=1
Column_405=1
Column_417=1
Column_418=1
Column_425=1
Column_440=1
Column_447=1
Column_454=1
Column_461=1
Column_470=1
Column_474=1
Column_483=1
Column_485=1
Column_499=1
Column_503=1
Column_536=1
Column_544=1
Column_547=1
Column_569=1
Column_571=1
Column_575=1

parameters:
[boosting: gbdt]
[objective: regression]
[metric: l2]
[tree_learner: serial]
[device_type: cpu]
[linear_tree: 0]
[data: ]
[valid: ]
[num_iterations: 6]
[learning_rate: 1]
[num_leaves: 32]
[num_threads: -1]
[deterministic: 0]
[force_col_wise: 0]
[force_row_wise: 0]
[histogram_pool_size: -1]
[max_depth: 5]
[min_data_in_leaf: 1000]
[min_sum_hessian_in_leaf: 0.001]
[bagging_fraction: 0.8]
[pos_bagging_fraction: 1]
[neg_bagging_fraction: 1]
[bagging_freq: 10]
[bagging_seed: 3]
[feature_fraction: 0.2]
[feature_fraction_bynode: 1]
[feature_fraction_seed: 2]
[extra_trees: 0]
[extra_seed: 6]
[early_stopping_round: 0]
[first_metric_only: 0]
[max_delta_step: 0]
[lambda_l1: 0.1]
[lambda_l2: 0]
[linear_lambda: 0]
[min_gain_to_split: 0]
[drop_rate: 0.1]
[max_drop: 50]
[skip_drop: 0.5]
[xgboost_dart_mode: 0]
[uniform_drop: 0]
[drop_seed: 4]
[top_rate: 0.2]
[other_rate: 0.1]
[min_data_per_group: 100]
[max_cat_threshold: 32]
[cat_l2: 10]
[cat_smooth: 10]
[max_cat_to_onehot: 4]
[top_k: 20]
[monotone_constraints: ]
[monotone_constraints_method: basic]
[monotone_penalty: 0]
[feature_contri: ]
[forcedsplits_filename: ]
[refit_decay_rate: 0.9]
[cegb_tradeoff: 1]
[cegb_penalty_split: 0]
[cegb_penalty_feature_lazy: ]
[cegb_penalty_feature_coupled: ]
[path_smooth: 0]
[interaction_constraints: ]
[verbosity: -10]
[saved_feature_importance_type: 0]
[max_bin: 32]
[max_bin_by_feature: ]
[min_data_in_bin: 3]
[bin_construct_sample_cnt: 200000]
[data_random_seed: 1]
[is_enable_sparse: 1]
[enable_bundle: 1]
[use_missing: 1]
[zero_as_missing: 0]
[feature_pre_filter: 1]
[pre_partition: 0]
[two_round: 0]
[header: 0]
[label_column: ]
[weight_column: ]
[group_column: ]
[ignore_column: ]
[categorical_feature: ]
[forcedbins_filename: ]
[objective_seed: 5]
[num_class: 1]
[is_unbalance: 0]
[scale_pos_weight: 1]
[sigmoid: 1]
[boost_from_average: 1]
[reg_sqrt: 0]
[alpha: 0.9]
[fair_c: 1]
[poisson_max_delta_step: 0.7]
[tweedie_variance_power: 1.5]
[lambdarank_truncation_level: 30]
[lambdarank_norm: 1]
[label_gain: ]
[eval_at: ]
[multi_error_top_k: 1]
[auc_mu_weights: ]
[num_machines: 1]
[local_listen_port: 12400]
[time_out: 120]
[machine_list_filename: ]
[machines: ]
[gpu_platform_id: -1]
[gpu_device_id: -1]
[gpu_use_dp: 0]
[num_gpu: 1]

end of parameters

pandas_categorical:null

@jmoralez
Copy link
Collaborator

Thank you for the example @wangmn93. Using that model I get a big number as the Inf threshold. Do you get exactly zero? Here's my code:

import lightgbm as lgb

bst = lgb.Booster(model_file='model.txt')   # the file you posted
model = bst.dump_model()
model['tree_info'][5]['tree_structure']['right_child']['threshold']
#  1e+300

@github-actions
Copy link

This issue has been automatically closed because it has been awaiting a response for too long. When you have time to to work with the maintainers to resolve this issue, please post a new comment and it will be re-opened. If the issue has been locked for editing by the time you return to it, please open a new issue and reference this one. Thank you for taking the time to improve LightGBM!

@github-actions
Copy link

This issue has been automatically locked since there has not been any recent activity since it was closed. To start a new related discussion, open a new issue at https://github.com/microsoft/LightGBM/issues including a reference to this.

@github-actions github-actions bot locked as resolved and limited conversation to collaborators Aug 19, 2023
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants