Follow these steps to set up and run inference using MOIRAI:
- Set up the environment and initialize submodules.
- Run the inference script with the following commands:
MODEL='moirai'
for DATASET in 'etth1' 'etth2' 'ettm1' 'ettm2' 'weather_ltsf' 'electricity_ltsf'; do
for CTX_LEN in 5000 96; do
for PRED_LEN in 24 48 96 192 336 720; do
python run.py --config config/tsfm/${MODEL}/context_${CTX_LEN}/${DATASET}.yaml --seed_everything 0 \
--data.data_manager.init_args.path ${DATA_DIR} \
--trainer.default_root_dir ${LOG_DIR} \
--data.data_manager.init_args.dataset ${DATASET} \
--data.data_manager.init_args.prediction_length ${PRED_LEN}
done
done
done
patch size
(default: auto
): Specifies the patch size used during inference. When set to auto
, the model selects the patch size that minimizes validation loss based on historical data.
variate_mode
(default: S
): Determines whether the model operates in univariate (S
) or multivariate mode (M
) during inference.