-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
kernel.py
480 lines (433 loc) · 22.9 KB
/
kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# Copyright (c) Microsoft. All rights reserved.
import logging
from collections.abc import AsyncGenerator, AsyncIterable, Callable
from copy import copy
from typing import TYPE_CHECKING, Any, Literal, TypeVar
from semantic_kernel.connectors.ai.embeddings.embedding_generator_base import EmbeddingGeneratorBase
from semantic_kernel.const import METADATA_EXCEPTION_KEY
from semantic_kernel.contents.chat_history import ChatHistory
from semantic_kernel.contents.function_call_content import FunctionCallContent
from semantic_kernel.contents.function_result_content import FunctionResultContent
from semantic_kernel.contents.streaming_content_mixin import StreamingContentMixin
from semantic_kernel.exceptions import (
FunctionCallInvalidArgumentsException,
FunctionExecutionException,
KernelFunctionNotFoundError,
KernelInvokeException,
OperationCancelledException,
TemplateSyntaxError,
)
from semantic_kernel.exceptions.kernel_exceptions import KernelServiceNotFoundError
from semantic_kernel.filters.auto_function_invocation.auto_function_invocation_context import (
AutoFunctionInvocationContext,
)
from semantic_kernel.filters.filter_types import FilterTypes
from semantic_kernel.filters.kernel_filters_extension import (
KernelFilterExtension,
_rebuild_auto_function_invocation_context,
)
from semantic_kernel.functions.function_result import FunctionResult
from semantic_kernel.functions.kernel_arguments import KernelArguments
from semantic_kernel.functions.kernel_function_extension import KernelFunctionExtension
from semantic_kernel.functions.kernel_function_from_prompt import KernelFunctionFromPrompt
from semantic_kernel.functions.kernel_plugin import KernelPlugin
from semantic_kernel.kernel_types import AI_SERVICE_CLIENT_TYPE, OneOrMany
from semantic_kernel.prompt_template.const import KERNEL_TEMPLATE_FORMAT_NAME
from semantic_kernel.reliability.kernel_reliability_extension import KernelReliabilityExtension
from semantic_kernel.services.ai_service_selector import AIServiceSelector
from semantic_kernel.services.kernel_services_extension import KernelServicesExtension
from semantic_kernel.utils.naming import generate_random_ascii_name
if TYPE_CHECKING:
from semantic_kernel.connectors.ai.function_choice_behavior import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.prompt_execution_settings import PromptExecutionSettings
from semantic_kernel.functions.kernel_function import KernelFunction
T = TypeVar("T")
TDataModel = TypeVar("TDataModel")
logger: logging.Logger = logging.getLogger(__name__)
class Kernel(KernelFilterExtension, KernelFunctionExtension, KernelServicesExtension, KernelReliabilityExtension):
"""The Kernel of Semantic Kernel.
This is the main entry point for Semantic Kernel. It provides the ability to run
functions and manage filters, plugins, and AI services.
Attributes:
function_invocation_filters: Filters applied during function invocation, from KernelFilterExtension.
prompt_rendering_filters: Filters applied during prompt rendering, from KernelFilterExtension.
auto_function_invocation_filters: Filters applied during auto function invocation, from KernelFilterExtension.
plugins: A dict with the plugins registered with the Kernel, from KernelFunctionExtension.
services: A dict with the services registered with the Kernel, from KernelServicesExtension.
ai_service_selector: The AI service selector to be used by the kernel, from KernelServicesExtension.
retry_mechanism: The retry mechanism to be used by the kernel, from KernelReliabilityExtension.
"""
def __init__(
self,
plugins: KernelPlugin | dict[str, KernelPlugin] | list[KernelPlugin] | None = None,
services: (
AI_SERVICE_CLIENT_TYPE | list[AI_SERVICE_CLIENT_TYPE] | dict[str, AI_SERVICE_CLIENT_TYPE] | None
) = None,
ai_service_selector: AIServiceSelector | None = None,
**kwargs: Any,
) -> None:
"""Initialize a new instance of the Kernel class.
Args:
plugins: The plugins to be used by the kernel, will be rewritten to a dict with plugin name as key
services: The services to be used by the kernel, will be rewritten to a dict with service_id as key
ai_service_selector: The AI service selector to be used by the kernel,
default is based on order of execution settings.
**kwargs: Additional fields to be passed to the Kernel model,
these are limited to retry_mechanism and function_invoking_handlers
and function_invoked_handlers, the best way to add function_invoking_handlers
and function_invoked_handlers is to use the add_function_invoking_handler
and add_function_invoked_handler methods.
"""
args = {
"services": services,
"plugins": plugins,
**kwargs,
}
if ai_service_selector:
args["ai_service_selector"] = ai_service_selector
super().__init__(**args)
async def invoke_stream(
self,
function: "KernelFunction | None" = None,
arguments: KernelArguments | None = None,
function_name: str | None = None,
plugin_name: str | None = None,
metadata: dict[str, Any] = {},
return_function_results: bool = False,
**kwargs: Any,
) -> AsyncGenerator[list["StreamingContentMixin"] | FunctionResult | list[FunctionResult], Any]:
"""Execute one or more stream functions.
This will execute the functions in the order they are provided, if a list of functions is provided.
When multiple functions are provided only the last one is streamed, the rest is executed as a pipeline.
Args:
function (KernelFunction): The function to execute,
this value has precedence when supplying both this and using function_name and plugin_name,
if this is none, function_name and plugin_name are used and cannot be None.
arguments (KernelArguments | None): The arguments to pass to the function(s), optional
function_name (str | None): The name of the function to execute
plugin_name (str | None): The name of the plugin to execute
metadata (dict[str, Any]): The metadata to pass to the function(s)
return_function_results (bool): If True, the function results are yielded as a list[FunctionResult]
in addition to the streaming content, otherwise only the streaming content is yielded.
kwargs (dict[str, Any]): arguments that can be used instead of supplying KernelArguments
Yields:
StreamingContentMixin: The content of the stream of the last function provided.
"""
if arguments is None:
arguments = KernelArguments(**kwargs)
else:
arguments.update(kwargs)
if not function:
if not function_name or not plugin_name:
raise KernelFunctionNotFoundError("No function(s) or function- and plugin-name provided")
function = self.get_function(plugin_name, function_name)
function_result: list[list["StreamingContentMixin"] | Any] = []
async for stream_message in function.invoke_stream(self, arguments):
if isinstance(stream_message, FunctionResult) and (
exception := stream_message.metadata.get(METADATA_EXCEPTION_KEY, None)
):
raise KernelInvokeException(
f"Error occurred while invoking function: '{function.fully_qualified_name}'"
) from exception
function_result.append(stream_message)
yield stream_message
if return_function_results:
output_function_result: list["StreamingContentMixin"] = []
for result in function_result:
for choice in result:
if not isinstance(choice, StreamingContentMixin):
continue
if len(output_function_result) <= choice.choice_index:
output_function_result.append(copy(choice))
else:
output_function_result[choice.choice_index] += choice
yield FunctionResult(function=function.metadata, value=output_function_result)
async def invoke(
self,
function: "KernelFunction | None" = None,
arguments: KernelArguments | None = None,
function_name: str | None = None,
plugin_name: str | None = None,
metadata: dict[str, Any] = {},
**kwargs: Any,
) -> FunctionResult | None:
"""Execute a function and return the FunctionResult.
Args:
function (KernelFunction): The function or functions to execute,
this value has precedence when supplying both this and using function_name and plugin_name,
if this is none, function_name and plugin_name are used and cannot be None.
arguments (KernelArguments): The arguments to pass to the function(s), optional
function_name (str | None): The name of the function to execute
plugin_name (str | None): The name of the plugin to execute
metadata (dict[str, Any]): The metadata to pass to the function(s)
kwargs (dict[str, Any]): arguments that can be used instead of supplying KernelArguments
Raises:
KernelInvokeException: If an error occurs during function invocation
"""
if arguments is None:
arguments = KernelArguments(**kwargs)
else:
arguments.update(kwargs)
if not function:
if not function_name or not plugin_name:
raise KernelFunctionNotFoundError("No function, or function name and plugin name provided")
function = self.get_function(plugin_name, function_name)
try:
return await function.invoke(kernel=self, arguments=arguments, metadata=metadata)
except OperationCancelledException as exc:
logger.info(f"Operation cancelled during function invocation. Message: {exc}")
return None
except Exception as exc:
logger.error(
"Something went wrong in function invocation. During function invocation:"
f" '{function.fully_qualified_name}'. Error description: '{exc!s}'"
)
raise KernelInvokeException(
f"Error occurred while invoking function: '{function.fully_qualified_name}'"
) from exc
async def invoke_prompt(
self,
prompt: str,
function_name: str | None = None,
plugin_name: str | None = None,
arguments: KernelArguments | None = None,
template_format: Literal[
"semantic-kernel",
"handlebars",
"jinja2",
] = KERNEL_TEMPLATE_FORMAT_NAME,
**kwargs: Any,
) -> FunctionResult | None:
"""Invoke a function from the provided prompt.
Args:
prompt (str): The prompt to use
function_name (str): The name of the function, optional
plugin_name (str): The name of the plugin, optional
arguments (KernelArguments | None): The arguments to pass to the function(s), optional
template_format (str | None): The format of the prompt template
kwargs (dict[str, Any]): arguments that can be used instead of supplying KernelArguments
Returns:
FunctionResult | list[FunctionResult] | None: The result of the function(s)
"""
if arguments is None:
arguments = KernelArguments(**kwargs)
if not prompt:
raise TemplateSyntaxError("The prompt is either null or empty.")
function = KernelFunctionFromPrompt(
function_name=function_name or generate_random_ascii_name(),
plugin_name=plugin_name,
prompt=prompt,
template_format=template_format,
)
return await self.invoke(function=function, arguments=arguments)
async def invoke_prompt_stream(
self,
prompt: str,
function_name: str | None = None,
plugin_name: str | None = None,
arguments: KernelArguments | None = None,
template_format: Literal[
"semantic-kernel",
"handlebars",
"jinja2",
] = KERNEL_TEMPLATE_FORMAT_NAME,
return_function_results: bool | None = False,
**kwargs: Any,
) -> AsyncIterable[list["StreamingContentMixin"] | FunctionResult | list[FunctionResult]]:
"""Invoke a function from the provided prompt and stream the results.
Args:
prompt (str): The prompt to use
function_name (str): The name of the function, optional
plugin_name (str): The name of the plugin, optional
arguments (KernelArguments | None): The arguments to pass to the function(s), optional
template_format (str | None): The format of the prompt template
return_function_results (bool): If True, the function results are yielded as a list[FunctionResult]
kwargs (dict[str, Any]): arguments that can be used instead of supplying KernelArguments
Returns:
AsyncIterable[StreamingContentMixin]: The content of the stream of the last function provided.
"""
if arguments is None:
arguments = KernelArguments(**kwargs)
if not prompt:
raise TemplateSyntaxError("The prompt is either null or empty.")
from semantic_kernel.functions.kernel_function_from_prompt import KernelFunctionFromPrompt
function = KernelFunctionFromPrompt(
function_name=function_name or generate_random_ascii_name(),
plugin_name=plugin_name,
prompt=prompt,
template_format=template_format,
)
function_result: list[list["StreamingContentMixin"] | Any] = []
async for stream_message in self.invoke_stream(function=function, arguments=arguments):
if isinstance(stream_message, FunctionResult) and (
exception := stream_message.metadata.get(METADATA_EXCEPTION_KEY, None)
):
raise KernelInvokeException(
f"Error occurred while invoking function: '{function.fully_qualified_name}'"
) from exception
function_result.append(stream_message)
yield stream_message
if return_function_results:
output_function_result: list["StreamingContentMixin"] = []
for result in function_result:
for choice in result:
if not isinstance(choice, StreamingContentMixin):
continue
if len(output_function_result) <= choice.choice_index:
output_function_result.append(copy(choice))
else:
output_function_result[choice.choice_index] += choice
yield FunctionResult(function=function.metadata, value=output_function_result)
async def invoke_function_call(
self,
function_call: FunctionCallContent,
chat_history: ChatHistory,
arguments: "KernelArguments | None" = None,
function_call_count: int | None = None,
request_index: int | None = None,
function_behavior: "FunctionChoiceBehavior" = None, # type: ignore
) -> "AutoFunctionInvocationContext | None":
"""Processes the provided FunctionCallContent and updates the chat history."""
args_cloned = copy(arguments) if arguments else KernelArguments()
try:
parsed_args = function_call.to_kernel_arguments()
if parsed_args:
args_cloned.update(parsed_args)
except (FunctionCallInvalidArgumentsException, TypeError) as exc:
logger.info(f"Received invalid arguments for function {function_call.name}: {exc}. Trying tool call again.")
frc = FunctionResultContent.from_function_call_content_and_result(
function_call_content=function_call,
result="The tool call arguments are malformed. Arguments must be in JSON format. Please try again.",
)
chat_history.add_message(message=frc.to_chat_message_content())
return None
try:
if function_call.name is None:
raise FunctionExecutionException("The function name is required.")
if function_behavior is not None and function_behavior.filters:
allowed_functions = [
func.fully_qualified_name for func in self.get_list_of_function_metadata(function_behavior.filters)
]
if function_call.name not in allowed_functions:
raise FunctionExecutionException(
f"Only functions: {allowed_functions} are allowed, {function_call.name} is not allowed."
)
function_to_call = self.get_function(function_call.plugin_name, function_call.function_name)
except Exception as exc:
logger.exception(f"The function `{function_call.name}` is not part of the provided functions: {exc}.")
frc = FunctionResultContent.from_function_call_content_and_result(
function_call_content=function_call,
result=(
f"The tool call with name `{function_call.name}` is not part of the provided tools, "
"please try again with a supplied tool call name and make sure to validate the name."
),
)
chat_history.add_message(message=frc.to_chat_message_content())
return None
num_required_func_params = len([param for param in function_to_call.parameters if param.is_required])
if parsed_args is None or len(parsed_args) < num_required_func_params:
msg = (
f"There are `{num_required_func_params}` tool call arguments required and "
f"only `{len(parsed_args) if parsed_args is not None else 0}` received. The required arguments are: "
f"{[param.name for param in function_to_call.parameters if param.is_required]}. "
"Please provide the required arguments and try again."
)
logger.info(msg)
frc = FunctionResultContent.from_function_call_content_and_result(
function_call_content=function_call,
result=msg,
)
chat_history.add_message(message=frc.to_chat_message_content())
return None
logger.info(f"Calling {function_call.name} function with args: {function_call.arguments}")
_rebuild_auto_function_invocation_context()
invocation_context = AutoFunctionInvocationContext(
function=function_to_call,
kernel=self,
arguments=args_cloned,
chat_history=chat_history,
function_result=FunctionResult(function=function_to_call.metadata, value=None),
function_count=function_call_count or 0,
request_sequence_index=request_index or 0,
)
if function_call.index is not None:
invocation_context.function_sequence_index = function_call.index
stack = self.construct_call_stack(
filter_type=FilterTypes.AUTO_FUNCTION_INVOCATION,
inner_function=self._inner_auto_function_invoke_handler,
)
await stack(invocation_context)
frc = FunctionResultContent.from_function_call_content_and_result(
function_call_content=function_call, result=invocation_context.function_result
)
chat_history.add_message(message=frc.to_chat_message_content())
return invocation_context if invocation_context.terminate else None
async def _inner_auto_function_invoke_handler(self, context: AutoFunctionInvocationContext):
"""Inner auto function invocation handler."""
try:
result = await context.function.invoke(context.kernel, context.arguments)
if result:
context.function_result = result
except Exception as exc:
logger.exception(f"Error invoking function {context.function.fully_qualified_name}: {exc}.")
value = f"An error occurred while invoking the function {context.function.fully_qualified_name}: {exc}"
if context.function_result is not None:
context.function_result.value = value
else:
context.function_result = FunctionResult(function=context.function.metadata, value=value)
return
async def add_embedding_to_object(
self,
inputs: OneOrMany[TDataModel],
field_to_embed: str,
field_to_store: str,
execution_settings: dict[str, "PromptExecutionSettings"],
container_mode: bool = False,
cast_function: Callable[[list[float]], Any] | None = None,
**kwargs: Any,
):
"""Gather all fields to embed, batch the embedding generation and store."""
contents: list[Any] = []
dict_like = (getter := getattr(inputs, "get", False)) and callable(getter)
list_of_dicts: bool = False
if container_mode:
contents = inputs[field_to_embed].tolist() # type: ignore
elif isinstance(inputs, list):
list_of_dicts = (getter := getattr(inputs[0], "get", False)) and callable(getter)
for record in inputs:
if list_of_dicts:
contents.append(record.get(field_to_embed)) # type: ignore
else:
contents.append(getattr(record, field_to_embed))
else:
if dict_like:
contents.append(inputs.get(field_to_embed)) # type: ignore
else:
contents.append(getattr(inputs, field_to_embed))
vectors = None
service: EmbeddingGeneratorBase | None = None
for service_id, settings in execution_settings.items():
service = self.get_service(service_id, type=EmbeddingGeneratorBase) # type: ignore
if service:
vectors = await service.generate_raw_embeddings(texts=contents, settings=settings, **kwargs) # type: ignore
break
if not service:
raise KernelServiceNotFoundError("No service found to generate embeddings.")
if vectors is None:
raise KernelInvokeException("No vectors were generated.")
if cast_function:
vectors = [cast_function(vector) for vector in vectors]
if container_mode:
inputs[field_to_store] = vectors # type: ignore
return
if isinstance(inputs, list):
for record, vector in zip(inputs, vectors):
if list_of_dicts:
record[field_to_store] = vector # type: ignore
else:
setattr(record, field_to_store, vector)
return
if dict_like:
inputs[field_to_store] = vectors[0] # type: ignore
return
setattr(inputs, field_to_store, vectors[0])