forked from Benqi-fi/BENQI-Smart-Contracts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ExponentialNoError.sol
195 lines (158 loc) · 6.42 KB
/
ExponentialNoError.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
pragma solidity 0.5.17;
/**
* @title Exponential module for storing fixed-precision decimals
* @author Benqi
* @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places.
* Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is:
* `Exp({mantissa: 5100000000000000000})`.
*/
contract ExponentialNoError {
uint constant expScale = 1e18;
uint constant doubleScale = 1e36;
uint constant halfExpScale = expScale/2;
uint constant mantissaOne = expScale;
struct Exp {
uint mantissa;
}
struct Double {
uint mantissa;
}
/**
* @dev Truncates the given exp to a whole number value.
* For example, truncate(Exp{mantissa: 15 * expScale}) = 15
*/
function truncate(Exp memory exp) pure internal returns (uint) {
// Note: We are not using careful math here as we're performing a division that cannot fail
return exp.mantissa / expScale;
}
/**
* @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
*/
function mul_ScalarTruncate(Exp memory a, uint scalar) pure internal returns (uint) {
Exp memory product = mul_(a, scalar);
return truncate(product);
}
/**
* @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
*/
function mul_ScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (uint) {
Exp memory product = mul_(a, scalar);
return add_(truncate(product), addend);
}
/**
* @dev Checks if first Exp is less than second Exp.
*/
function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {
return left.mantissa < right.mantissa;
}
/**
* @dev Checks if left Exp <= right Exp.
*/
function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) {
return left.mantissa <= right.mantissa;
}
/**
* @dev Checks if left Exp > right Exp.
*/
function greaterThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {
return left.mantissa > right.mantissa;
}
/**
* @dev returns true if Exp is exactly zero
*/
function isZeroExp(Exp memory value) pure internal returns (bool) {
return value.mantissa == 0;
}
function safe224(uint n, string memory errorMessage) pure internal returns (uint224) {
require(n < 2**224, errorMessage);
return uint224(n);
}
function safe32(uint n, string memory errorMessage) pure internal returns (uint32) {
require(n < 2**32, errorMessage);
return uint32(n);
}
function add_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: add_(a.mantissa, b.mantissa)});
}
function add_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: add_(a.mantissa, b.mantissa)});
}
function add_(uint a, uint b) pure internal returns (uint) {
return add_(a, b, "addition overflow");
}
function add_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
uint c = a + b;
require(c >= a, errorMessage);
return c;
}
function sub_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: sub_(a.mantissa, b.mantissa)});
}
function sub_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: sub_(a.mantissa, b.mantissa)});
}
function sub_(uint a, uint b) pure internal returns (uint) {
return sub_(a, b, "subtraction underflow");
}
function sub_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
require(b <= a, errorMessage);
return a - b;
}
function mul_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale});
}
function mul_(Exp memory a, uint b) pure internal returns (Exp memory) {
return Exp({mantissa: mul_(a.mantissa, b)});
}
function mul_(uint a, Exp memory b) pure internal returns (uint) {
return mul_(a, b.mantissa) / expScale;
}
function mul_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale});
}
function mul_(Double memory a, uint b) pure internal returns (Double memory) {
return Double({mantissa: mul_(a.mantissa, b)});
}
function mul_(uint a, Double memory b) pure internal returns (uint) {
return mul_(a, b.mantissa) / doubleScale;
}
function mul_(uint a, uint b) pure internal returns (uint) {
return mul_(a, b, "multiplication overflow");
}
function mul_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
if (a == 0 || b == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, errorMessage);
return c;
}
function div_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)});
}
function div_(Exp memory a, uint b) pure internal returns (Exp memory) {
return Exp({mantissa: div_(a.mantissa, b)});
}
function div_(uint a, Exp memory b) pure internal returns (uint) {
return div_(mul_(a, expScale), b.mantissa);
}
function div_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)});
}
function div_(Double memory a, uint b) pure internal returns (Double memory) {
return Double({mantissa: div_(a.mantissa, b)});
}
function div_(uint a, Double memory b) pure internal returns (uint) {
return div_(mul_(a, doubleScale), b.mantissa);
}
function div_(uint a, uint b) pure internal returns (uint) {
return div_(a, b, "divide by zero");
}
function div_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
require(b > 0, errorMessage);
return a / b;
}
function fraction(uint a, uint b) pure internal returns (Double memory) {
return Double({mantissa: div_(mul_(a, doubleScale), b)});
}
}