Skip to content

Latest commit

 

History

History
71 lines (56 loc) · 2.07 KB

README.md

File metadata and controls

71 lines (56 loc) · 2.07 KB

Intro

Status: Archive (code is provided as-is)

Mujoco version of DeepMimic:

  • No C++ codes --> pure python
  • No bullet engine --> Mujoco engine
  • No PPO --> TRPO-based

Examples:

  • Walk (play MoCap data):

walk

  • Spinkick (play MoCap data):

spinkick

  • Dance_b (play MoCap data):

dance

  • Stand up straight (training via TRPO):

standup

Install

  • Mujoco: Download mujoco200 and put it in the ~/.mujoco/ folder (mjkey.txt should also be in this folder). Then install mujoco-py:
python3 -m pip install mujoco-py
  • python3 modules: python dependencies
python3 -m pip installl gym
python3 -m pip install tensorflow-gpu
python3 -m pip install pyquaternion
python3 -m pip install joblib
  • MPI & MPI4PY: mpi for parrellel training
sudo apt-get install openmpi-bin openmpi-common openssh-client libopenmpi-dev
python3 -m pip install mpi4py

Usage

  • Testing examples:
python3 dp_env_v3.py # play a mocap
python3 env_torque_test.py # torque control with p-controller
  • Gym env

Before training a policy: Modify the step in dp_env_v3.py to set up correct rewards for the task. Use dp_env_v3.py as the training env.

Training a policy that makes the agent stands up straight:

python3 trpo.py

Running a policy:

python3 trpo.py --task evaluate --load_model_path XXXX # for evaluation
# e.g., python3 trpo.py --task evaluate --load_model_path checkpoint_tmp/DeepMimic/trpo-walk-0/DeepMimic/trpo-walk-0

Acknowledge

This repository is based on code accompanying the SIGGRAPH 2018 paper: "DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills". The framework uses reinforcement learning to train a simulated humanoid to imitate a variety of motion skills from mocap data. Project page: https://xbpeng.github.io/projects/DeepMimic/index.html