-
Notifications
You must be signed in to change notification settings - Fork 7
/
keras_gan.py
237 lines (170 loc) · 7.89 KB
/
keras_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from __future__ import print_function, division
from keras.datasets import mnist
from keras.datasets import cifar10
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam, SGD, RMSprop, Adagrad, Adadelta
import tensorflow as tf
from scipy.misc import imread, imsave
import matplotlib.pyplot as plt
import sys
import os
from PIL import Image
from glob import glob
import numpy as np
class GAN():
def __init__(self):
#RGB image as an input
self.img_rows = 28
self.img_cols = 28
self.channels = 3
self.img_shape = (self.img_rows, self.img_cols, self.channels)
# optimizer = Adam(lr=0.0002, beta_1=0.5, beta_2=0.999)
# optimizer = SGD(lr=0.01, momentum=0.5)
optimizer = RMSprop(lr=0.0002, rho=0.9)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build and compile the generator
self.generator = self.build_generator()
self.generator.compile(loss='binary_crossentropy', optimizer=optimizer)
# The generator takes noise as input
z = Input(shape=(100,))
img = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# valid takes generated images as input and determines validity
valid = self.discriminator(img)
# The combined model (stacked generator and discriminator) takes
# noise as input => generates images => determines validity
self.combined = Model(z, valid)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_generator(self):
noise_shape = (100,)
model = Sequential()
model.add(Dense(256, input_shape=noise_shape))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
noise = Input(shape=noise_shape)
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
img_shape = (self.img_rows, self.img_cols, self.channels)
model = Sequential()
model.add(Flatten(input_shape=img_shape))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=img_shape)
validity = model(img)
return Model(img, validity)
def get_image(self, image_path, width, height, mode):
image = Image.open(image_path)
# image = image.resize([width, height], Image.BILINEAR)
#The celebA dataset with human faces was used and cropping the images
#helps to get better results by eliminating the background pixels
if image.size != (width, height):
# Remove most pixels that aren't part of a face
face_width = face_height = 108
j = (image.size[0] - face_width) // 2
i = (image.size[1] - face_height) // 2
image = image.crop([j, i, j + face_width, i + face_height])
image = image.resize([width, height])
return np.array(image.convert(mode))
def get_batch(self, image_files, width, height, mode):
data_batch = np.array(
[self.get_image(sample_file, width, height, mode) for sample_file in image_files])
return data_batch
def train(self, epochs, batch_size=128, save_interval=50):
# Directory where the face images are stored
data_dir = './data_face'
# Input the images from the directory
X_train = self.get_batch(glob(os.path.join(data_dir, '*.jpg'))[:5000], 28, 28, 'RGB')
#Rescale -1 to 1
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
# X_train = np.expand_dims(X_train, axis=3)
half_batch = int(batch_size / 2)
# Array initialization for logging of the losses
d_loss_logs_r = []
d_loss_logs_f = []
g_loss_logs = []
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random half the batch size of images
idx = np.random.randint(0, X_train.shape[0], half_batch)
imgs = X_train[idx]
noise = np.random.normal(0, 1, (half_batch, 100))
# Generate a half batch of new images
gen_imgs = self.generator.predict(noise)
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, np.ones((half_batch, 1)))
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
noise = np.random.normal(0, 1, (batch_size, 100))
# The generator wants the discriminator to label the generated samples
# as valid (ones)
valid_y = np.array([1] * batch_size)
# Train the generator
g_loss = self.combined.train_on_batch(noise, valid_y)
# Print the progress
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
# Store the losses
d_loss_logs_r.append([epoch, d_loss[0]])
d_loss_logs_f.append([epoch, d_loss[1]])
g_loss_logs.append([epoch, g_loss])
# If at save interval => save generated image samples
if epoch % save_interval == 0:
self.save_imgs(epoch)
d_loss_logs_r_a = np.array(d_loss_logs_r)
d_loss_logs_f_a = np.array(d_loss_logs_f)
g_loss_logs_a = np.array(g_loss_logs)
# At the end of training plot the losses vs epochs
plt.plot(d_loss_logs_r_a[:,0], d_loss_logs_r_a[:,1], label="Discriminator Loss - Real")
plt.plot(d_loss_logs_f_a[:,0], d_loss_logs_f_a[:,1], label="Discriminator Loss - Fake")
plt.plot(g_loss_logs_a[:,0], g_loss_logs_a[:,1], label="Generator Loss")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.title('GAN')
plt.grid(True)
plt.show()
def save_imgs(self, epoch):
r, c = 5, 5
noise = np.random.normal(0, 1, (r * c, 100))
gen_imgs = self.generator.predict(noise)
# Rescale images 0 - 1
gen_imgs = (1/2.5) * gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[cnt, :,:,:])
axs[i,j].axis('off')
cnt += 1
fig.savefig("output_images/%d.png" % epoch)
plt.close()
if __name__ == '__main__':
gan = GAN()
gan.train(epochs=5000, batch_size=32, save_interval=200)