-
Notifications
You must be signed in to change notification settings - Fork 0
The project aims to create a Supervised Machine Learning algorithm for cat classification problem that detects whether a cat is present in the image or not by generating an RGB/HSV Histogram Model. By processing a large set of images, the specific features are being identified with an accuracy of up to 83%.
mirunamariafatu/Cat-Detection
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Fatu Miruna-Maria 311CA Part 3 - Householder Prediction RgbHistogram: - se construiesc matricile red, green, blue extrase din img - cu ajutorul functiei idivide acestea sunt scalate la intervalul dorit - intrucat idivide va returna si 0, iar functia accumarray primeste pozitiile elementelor (pozitia 0 nu exista), adaugam +1 - se creeaza histogramele care vor fi adaugate in sol HsvHistogram: - fiecare pixel din r,g si b va fi transformat in h, s, v - analog RgbHistogram SSt si Householder: - urmeaza algoritmul prezentat la seminarii Preprocess: - mai intai sunt extrase histogramele pozelor cu pisici, apoi cele fara pisici - matricea X contine toate histogramele pozelor, iar y etichetele pozelor (1 sau -1) Learn si Evaluate: - evaluate este construita asemanator cu preprocess - se obtine w si se construieste noul y - variabila corect creste de fiecare data cand conditia de poza cu pisici/fara pisici este indeplinita Part 4 - Gradient Descent Prediction Learn : - scalez matricea X si adaug coloana finala de 1 - generez vectorul coloana w dupa algoritmul Mini-batch Gradient Descent Evaluate: - cu functia preprocess generez toate histogramele imaginilor in matricea X - scalez matricea X si adaug coloana finala de 1 - construiesc noul y - pentru fiecare set de poze(cu pisici si fara pisici) verific daca acestea au fost corect identificate, in caz afirmativ variabila corect este incrementata - calculez procentajul imaginilor corect identificate
About
The project aims to create a Supervised Machine Learning algorithm for cat classification problem that detects whether a cat is present in the image or not by generating an RGB/HSV Histogram Model. By processing a large set of images, the specific features are being identified with an accuracy of up to 83%.
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published