-
Notifications
You must be signed in to change notification settings - Fork 86
/
finetune.py
417 lines (352 loc) · 16.8 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# Code for "[HAQ: Hardware-Aware Automated Quantization with Mixed Precision"
# Kuan Wang*, Zhijian Liu*, Yujun Lin*, Ji Lin, Song Han
# {kuanwang, zhijian, yujunlin, jilin, songhan}@mit.edu
import os
import time
import math
import random
import shutil
import argparse
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torchvision.models as models
import models as customized_models
from lib.utils.utils import Logger, AverageMeter, accuracy
from lib.utils.data_utils import get_dataset
from progress.bar import Bar
from lib.utils.quantize_utils import quantize_model, kmeans_update_model, QConv2d, QLinear, calibrate
# Models
default_model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
customized_models_names = sorted(name for name in customized_models.__dict__
if name.islower() and not name.startswith("__")
and callable(customized_models.__dict__[name]))
for name in customized_models.__dict__:
if name.islower() and not name.startswith("__") and callable(customized_models.__dict__[name]):
models.__dict__[name] = customized_models.__dict__[name]
model_names = default_model_names + customized_models_names
# Parse arguments
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
# Datasets
parser.add_argument('-d', '--data', default='data/imagenet', type=str)
parser.add_argument('--data_name', default='imagenet', type=str)
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# Optimization options
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--warmup_epoch', default=0, type=int, metavar='N',
help='manual warmup epoch number (useful on restarts)')
parser.add_argument('--train_batch', default=256, type=int, metavar='N',
help='train batchsize (default: 256)')
parser.add_argument('--test_batch', default=512, type=int, metavar='N',
help='test batchsize (default: 512)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--lr_type', default='cos', type=str,
help='lr scheduler (exp/cos/step3/fixed)')
parser.add_argument('--schedule', type=int, nargs='+', default=[31, 61, 91],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-5, type=float,
metavar='W', help='weight decay (default: 1e-5)')
# Checkpoints
parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', action='store_true',
help='use pretrained model')
# Quantization
parser.add_argument('--linear_quantization', dest='linear_quantization', action='store_true',
help='quantize both weight and activation)')
parser.add_argument('--free_high_bit', default=True, type=bool,
help='free the high bit (>6)')
parser.add_argument('--half', action='store_true',
help='half')
parser.add_argument('--half_type', default='O1', type=str,
help='half type: O0/O1/O2/O3')
# Architecture
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50', choices=model_names,
help='model architecture:' + ' | '.join(model_names) + ' (default: resnet50)')
# Miscs
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
# Device options
parser.add_argument('--gpu_id', default='1', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
lr_current = state['lr']
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
best_acc = 0 # best test accuracy
def load_my_state_dict(model, state_dict):
model_state = model.state_dict()
for name, param in state_dict.items():
if name not in model_state:
continue
param_data = param.data
if model_state[name].shape == param_data.shape:
# print("load%s"%name)
model_state[name].copy_(param_data)
def train(train_loader, model, criterion, optimizer, epoch, use_cuda):
# switch to train mode
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
bar = Bar('Processing', max=len(train_loader))
for batch_idx, (inputs, targets) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# compute gradient
optimizer.zero_grad()
if args.half:
with apex.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
# with amp_handle.scale_loss(loss, optimizer) as scaled_loss:
# scaled_loss.backward()
else:
loss.backward()
# do SGD step
optimizer.step()
if not args.linear_quantization:
kmeans_update_model(model, quantizable_idx, centroid_label_dict, free_high_bit=args.free_high_bit)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
if batch_idx % 1 == 0:
bar.suffix = \
'({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | ' \
'Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(train_loader),
data=data_time.val,
bt=batch_time.val,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return losses.avg, top1.avg
def test(val_loader, model, criterion, epoch, use_cuda):
global best_acc
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
with torch.no_grad():
# switch to evaluate mode
model.eval()
end = time.time()
bar = Bar('Processing', max=len(val_loader))
for batch_idx, (inputs, targets) in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
if batch_idx % 1 == 0:
bar.suffix = \
'({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | ' \
'Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(val_loader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return losses.avg, top1.avg
def save_checkpoint(state, is_best, checkpoint='checkpoint', filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
def adjust_learning_rate(optimizer, epoch):
global lr_current
global best_acc
if epoch < args.warmup_epoch:
lr_current = state['lr']*args.gamma
elif args.lr_type == 'cos':
# cos
lr_current = 0.5 * args.lr * (1 + math.cos(math.pi * epoch / args.epochs))
elif args.lr_type == 'exp':
step = 1
decay = args.gamma
lr_current = args.lr * (decay ** (epoch // step))
elif epoch in args.schedule:
lr_current *= args.gamma
for param_group in optimizer.param_groups:
param_group['lr'] = lr_current
if __name__ == '__main__':
start_epoch = args.start_epoch # start from epoch 0 or last checkpoint epoch
if not os.path.isdir(args.checkpoint):
os.makedirs(args.checkpoint)
train_loader, val_loader, n_class = get_dataset(dataset_name=args.data_name, batch_size=args.train_batch,
n_worker=args.workers, data_root=args.data)
model = models.__dict__[args.arch](pretrained=args.pretrained)
print("=> creating model '{}'".format(args.arch), ' pretrained is ', args.pretrained)
print(' Total params: %.2fM' % (sum(p.numel() for p in model.parameters())/1000000.0))
cudnn.benchmark = True
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# use HalfTensor
if args.half:
try:
import apex
except ImportError:
raise ImportError("Please install apex from https://github.com/NVIDIA/apex")
model.cuda()
model, optimizer = apex.amp.initialize(model, optimizer, opt_level=args.half_type)
if args.linear_quantization:
quantizable_idx = []
for i, m in enumerate(model.modules()):
if type(m) in [QConv2d, QLinear]:
quantizable_idx.append(i)
# print(model)
print(quantizable_idx)
if 'mobilenetv2' in args.arch:
strategy = [[8, -1], [7, 7], [5, 6], [4, 6], [5, 6], [5, 7], [5, 6], [7, 4], [4, 6], [4, 6], [7, 7], [5, 6], [4, 6], [7, 3], [5, 7], [4, 7], [7, 3], [5, 7], [4, 7], [7, 7], [4, 7], [4, 7], [6, 4], [6, 7], [4, 7], [7, 4], [6, 7], [5, 7], [7, 4], [6, 7], [5, 7], [7, 4], [6, 7], [6, 7], [6, 4], [5, 7], [6, 7], [6, 4], [5, 7], [6, 7], [7, 7], [4, 7], [7, 7], [7, 7], [4, 7], [7, 7], [7, 7], [4, 7], [7, 7], [7, 7], [4, 7], [7, 7], [8, 8]]
else:
raise NotImplementedError
print(strategy)
quantize_layer_bit_dict = {n: b for n, b in zip(quantizable_idx, strategy)}
for i, layer in enumerate(model.modules()):
if i not in quantizable_idx:
continue
else:
layer.w_bit = quantize_layer_bit_dict[i][0]
layer.a_bit = quantize_layer_bit_dict[i][1]
model = model.cuda()
model = calibrate(model, train_loader)
else:
quantizable_idx = []
for i, m in enumerate(model.modules()):
if type(m) in [nn.Conv2d, nn.Linear]:
quantizable_idx.append(i)
print(quantizable_idx)
if args.arch.startswith('resnet50'):
# resnet50 ratio 10%
strategy = [6, 6, 6, 6, 5, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 5, 5, 5, 4, 5, 4, 4, 5, 4, 4, 4, 3, 4,
4, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 3, 2, 3, 2, 3, 3, 2, 3, 4]
else:
# you can put your own strategy here
raise NotImplementedError
print('strategy for ' + args.arch + ': ', strategy)
assert len(quantizable_idx) == len(strategy), \
'You should provide the same number of bit setting as layer list for weight quantization!'
centroid_label_dict = quantize_model(model, quantizable_idx, strategy, mode='cpu', quantize_bias=False,
centroids_init='k-means++', max_iter=50)
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model = model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# Resume
title = 'ImageNet-' + args.arch
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
args.checkpoint = os.path.dirname(args.resume)
checkpoint = torch.load(args.resume)
best_acc = checkpoint['best_acc']
print(best_acc)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'], strict=False)
optimizer.load_state_dict(checkpoint['optimizer'])
if os.path.isfile(os.path.join(args.checkpoint, 'log.txt')):
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title, resume=True)
else:
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
else:
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
if args.evaluate:
print('\nEvaluation only')
test_loss, test_acc = test(val_loader, model, criterion, start_epoch, use_cuda)
print(' Test Loss: %.8f, Test Acc: %.2f' % (test_loss, test_acc))
exit()
# Train and val
for epoch in range(start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
# if args.free_high_bit and args.epochs - epoch < args.epochs // 10:
if args.free_high_bit and epoch == args.epochs - 1 and (not args.linear_quantization):
# quantize the high bit layers only at last epoch to save time
centroid_label_dict = quantize_model(model, quantizable_idx, strategy, mode='cpu', quantize_bias=False,
centroids_init='k-means++', max_iter=50, free_high_bit=False)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, lr_current))
train_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch, use_cuda)
test_loss, test_acc = test(val_loader, model, criterion, epoch, use_cuda)
# append logger file
logger.append([lr_current, train_loss, test_loss, train_acc, test_acc])
# save model
is_best = test_acc > best_acc
best_acc = max(test_acc, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'acc': test_acc,
'best_acc': best_acc,
'optimizer' : optimizer.state_dict(),
}, is_best, checkpoint=args.checkpoint)
logger.close()
print('Best acc:')
print(best_acc)