Skip to content
/ DAFNet Public

Deep Adaptive Fusion Network for High Performance RGBT Tracking

Notifications You must be signed in to change notification settings

mjt1312/DAFNet

Repository files navigation

Deep Adaptive Fusion Network for High Performance RGBT Tracking

This project is created base on

-- RT-MDNet: Real-Time Multi-Domain Convolutional Neural Network Tracker Created by Ilchae Jung, Jeany Son, Mooyeol Baek, and Bohyung Han

Introduction

RT-MDNet is the real-time extension of MDNet and is the state-of-the-art real-time tracker. Detailed description of the system is provided by our project page and paper

Citation

If you're using this code in a publication, please cite our paper.

@InProceedings{rtmdnet,
author = {Jung, Ilchae and Son, Jeany and Baek, Mooyeol and Han, Bohyung},
title = {Real-Time MDNet},
booktitle = {European Conference on Computer Vision (ECCV)},
month = {Sept},
year = {2018}
}

System Requirements

This code is tested on 64 bit Linux (Ubuntu 16.04 LTS).

Prerequisites 0. PyTorch (>= 0.2.1) 0. For GPU support, a GPU (~2GB memory for test) and CUDA toolkit. 0. Training Dataset (ImageNet-Vid) if needed.

Online Tracking

Pretrained Model and results If you only run the tracker, you can use the pretrained model: RT-MDNet-ImageNet-pretrained. Also, results from pretrained model are provided in here.

Demo 0. Run 'Run.py'.

Learning RT-MDNet

Preparing Datasets 0. If you download ImageNet-Vid dataset, you run 'modules/prepro_data_imagenet.py' to parse meta-data from dataset. After that, 'imagenet_refine.pkl' is generized. 0. type the path of 'imagenet_refine.pkl' in 'train_mrcnn.py'

Demo 0. Run 'train_mrcnn.py' after hyper-parameter tuning suitable to the capacity of your system.

About

Deep Adaptive Fusion Network for High Performance RGBT Tracking

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published