forked from alt0xFF/hongkong_flowers
-
Notifications
You must be signed in to change notification settings - Fork 5
/
keras_v2.py
116 lines (93 loc) · 3.46 KB
/
keras_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import numpy as np
import keras
from keras.applications import ResNet50
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential, Model
from keras.layers import Dropout, Flatten, Dense
np.random.seed(1337) # for reproducibility
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # only use first GPU
def get_callbacks(weights_path, patience=30, monitor='val_loss'):
early_stopping = EarlyStopping(verbose=1, patience=patience, monitor=monitor)
model_checkpoint = ModelCheckpoint(weights_path, save_best_only=True, save_weights_only=True, monitor=monitor)
return [early_stopping, model_checkpoint]
# path to the model weights files.
finetuned_weights_path = 'trained/fine-tuned-resnet50-weights.h5'
weights_path = 'trained/hk_flower.h5'
# dimensions of our images.
img_width, img_height = 224, 224
train_data_dir = 'data/train'
validation_data_dir = 'data/valid_aug'
test_data_dir = 'data/test'
epochs = 1000
batch_size = 32
nb_classes = 168
patience = 20
# build the ResNet50 network
model = ResNet50(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3))
print('Model loaded.')
# only train last res block
for layer in model.layers:
layer.trainable = False
for layer in model.layers[80:]:
layer.trainable = True
# build a classifier model to put on top of the convolutional model
y = model.output
y = Flatten()(y)
y = Dropout(0.5)(y)
# now the shape = (batch_size, 4096)
y = Dense(4096, activation='elu', name='my_fc1')(y)
y = Dropout(0.5)(y)
predictions = Dense(nb_classes, activation='softmax', name='predictions')(y)
model = Model(model.input, predictions, name='resnet50')
model.load_weights(finetuned_weights_path, by_name=True)
print('Weight loaded.')
# and a very slow learning rate.
model.compile(loss='categorical_crossentropy',
optimizer=optimizers.SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True),
metrics=['accuracy'])
# prepare data augmentation configuration
train_datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator()
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
test_generator = test_datagen.flow_from_directory(
test_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
model.fit_generator(
train_generator,
steps_per_epoch=train_generator.samples // batch_size,
epochs=10,
validation_data=validation_generator,
validation_steps=validation_generator.samples // batch_size)
model.fit_generator(
train_generator,
callbacks=get_callbacks(weights_path, patience=patience),
steps_per_epoch=train_generator.samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=validation_generator.samples // batch_size)
# evalue
result = model.evaluate_generator(
generator=test_generator,
steps=test_generator.samples // batch_size)
print("Model [loss, accuracy]: {0}".format(result))