-
Notifications
You must be signed in to change notification settings - Fork 0
/
ddpg_agent.py
272 lines (214 loc) · 10.1 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import numpy as np
import random
import copy
from collections import namedtuple, deque, defaultdict
from model import Actor, Critic, ICM
import torch
import torch.nn.functional as F
import torch.optim as optim
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, config):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
"""
state_size = config.get('state_size')
action_size = config.get('action_size')
self.tau = config.get('tau', 1e-2)
self.batch_size = config.get('batch_size', 128)
self.gamma = config.get('gamma', 0.99)
# Actor Network (w/ Target Network)
self.actor_local = Actor(state_size, action_size)
self.actor_target = Actor(state_size, action_size)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=config.get('lr_actor', 1e-3), weight_decay=0)
# Critic Network (w/ Target Network)
self.critic_local = Critic(state_size, action_size)
self.critic_target = Critic(state_size, action_size)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=config.get('lr_critic', 1e-3), weight_decay=0)
# Modules
self.noise = config.get('noise', None)
self.icm = config.get('icm', None)
self.memory = config.get('memory', None)
def step(self, state, action, reward, next_state, done):
"""Save experience in replay memory, and use random sample from buffer to learn."""
# Save experience / reward
self.memory.add(state, action, reward, next_state, done)
# Learn, if enough samples are available in memory
if len(self.memory) > self.batch_size:
experiences = self.memory.sample(self.batch_size)
self.learn(experiences)
def act(self, state, add_noise=False, noise_scale=1.0):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float()
self.actor_local.eval()
with torch.no_grad():
action = self.actor_local(state).cpu().data.numpy()
self.actor_local.train()
if add_noise and self.noise:
action += noise_scale * self.noise.sample()
return np.clip(action, -1, 1)
def reset(self):
if self.noise:
self.noise.reset()
def learn(self, experiences):
"""Update policy and value parameters using given batch of experience tuples.
Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
where:
actor_target(state) -> action
critic_target(state, action) -> Q-value
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
if hasattr(self.memory, 'priorities'):
states, actions, rewards, next_states, dones, indices, weights = experiences
else:
states, actions, rewards, next_states, dones = experiences
# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions and Q values from target models
actions_next = self.actor_target(next_states)
Q_targets_next = self.critic_target(next_states, actions_next)
# Compute Q targets for current states (y_i)
if self.icm:
rewards += self.icm.surprise(states, actions, next_states)
Q_targets = rewards + (self.gamma * Q_targets_next * (1 - dones))
# critic loss
Q_expected = self.critic_local(states, actions)
if hasattr(self.memory, 'priorities'):
critic_loss = (Q_targets - Q_expected).pow(2) * weights
priorities = critic_loss + 1e-5
self.memory.update_priorities(indices, priorities)
critic_loss = critic_loss.mean()
else:
critic_loss = F.mse_loss(Q_targets, Q_expected)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# ---------------------------- update actor ---------------------------- #
# actor loss
actions_pred = self.actor_local(states)
actor_loss = -self.critic_local(states, actions_pred).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic_local, self.critic_target, self.tau)
self.soft_update(self.actor_local, self.actor_target, self.tau)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class OUNoise:
"""Ornstein-Uhlenbeck process."""
def __init__(self, size, mu=0., theta=0.15, sigma=0.2):
"""Initialize parameters and noise process."""
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.reset()
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
dx = self.theta * (self.mu - x) + self.sigma * np.array([random.random() for i in range(len(x))])
self.state = x + dx
return self.state
class SimpleNoise:
def __init__(self, size):
self.size = size
def sample(self):
return np.random.randn(self.size)
def reset(self):
pass
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, buffer_size):
"""Initialize a ReplayBuffer object.
Params
======
buffer_size (int): maximum size of buffer
"""
self.memory = deque(maxlen=int(buffer_size)) # internal memory (deque)
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self, batch_size):
"""Randomly sample a batch of experiences from memory.
Params
======
batch_size (int): size of each training batch
"""
experiences = random.sample(self.memory, k=batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float()
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float()
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float()
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float()
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float()
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)
class NaivePrioritizedBuffer():
def __init__(self, capacity, prob_alpha=0.6):
self.prob_alpha = prob_alpha
self.capacity = capacity
self.buffer = []
self.pos = 0
self.priorities = np.zeros((capacity,), dtype=np.float32)
def add(self, state, action, reward, next_state, done):
assert state.ndim == next_state.ndim
state = np.expand_dims(state, 0)
next_state = np.expand_dims(next_state, 0)
max_prio = self.priorities.max() if self.buffer else 1.0
if len(self.buffer) < self.capacity:
self.buffer.append((state, action, reward, next_state, done))
else:
self.buffer[self.pos] = (state, action, reward, next_state, done)
self.priorities[self.pos] = max_prio
self.pos = (self.pos + 1) % self.capacity
def sample(self, batch_size, beta=0.4):
if len(self.buffer) == self.capacity:
prios = self.priorities
else:
prios = self.priorities[:self.pos]
probs = prios ** self.prob_alpha
probs /= probs.sum()
indices = np.random.choice(len(self.buffer), batch_size, p=probs)
samples = [self.buffer[idx] for idx in indices]
total = len(self.buffer)
weights = (total * probs[indices]) ** (-beta)
weights /= weights.max()
weights = np.array(weights, dtype=np.float32)
batch = [x for x in zip(*samples)]
states = np.concatenate(batch[0])
actions = batch[1]
rewards = batch[2]
next_states = np.concatenate(batch[3])
dones = batch[4]
states = torch.from_numpy(np.vstack(states)).float()
actions = torch.from_numpy(np.vstack(actions)).float()
rewards = torch.from_numpy(np.vstack(rewards)).float()
next_states = torch.from_numpy(np.vstack(next_states)).float()
dones = torch.from_numpy(np.vstack(dones).astype(np.uint8)).float()
weights = torch.from_numpy(np.vstack(weights).astype(np.uint8)).float()
return states, actions, rewards, next_states, dones, indices, weights
def update_priorities(self, batch_indices, batch_priorities):
for idx, prio in zip(batch_indices, batch_priorities):
self.priorities[idx] = prio
def __len__(self):
return len(self.buffer)