-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
brainvision.py
1025 lines (911 loc) · 42.4 KB
/
brainvision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""Conversion tool from Brain Vision EEG to FIF."""
# Authors: Teon Brooks <teon.brooks@gmail.com>
# Christian Brodbeck <christianbrodbeck@nyu.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Jona Sassenhagen <jona.sassenhagen@gmail.com>
# Phillip Alday <phillip.alday@unisa.edu.au>
# Okba Bekhelifi <okba.bekhelifi@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
# License: BSD (3-clause)
import os
import os.path as op
import re
from datetime import datetime
from math import modf
from functools import partial
import numpy as np
from ...utils import verbose, logger, warn
from ..constants import FIFF
from ..meas_info import _empty_info
from ..base import BaseRaw, _check_update_montage
from ..utils import (_read_segments_file, _synthesize_stim_channel,
_mult_cal_one)
from ...annotations import Annotations, events_from_annotations
from ...externals.six import StringIO, string_types
from ...externals.six.moves import configparser
class RawBrainVision(BaseRaw):
"""Raw object from Brain Vision EEG file.
Parameters
----------
vhdr_fname : str
Path to the EEG header file.
montage : str | None | instance of Montage
Path or instance of montage containing electrode positions. If None,
read sensor locations from header file if present, otherwise (0, 0, 0).
See the documentation of :func:`mne.channels.read_montage` for more
information.
eog : list or tuple
Names of channels or list of indices that should be designated
EOG channels. Values should correspond to the vhdr file.
Default is ``('HEOGL', 'HEOGR', 'VEOGb')``.
misc : list or tuple of str | 'auto'
Names of channels or list of indices that should be designated
MISC channels. Values should correspond to the electrodes
in the vhdr file. If 'auto', units in vhdr file are used for inferring
misc channels. Default is ``'auto'``.
scale : float
The scaling factor for EEG data. Unless specified otherwise by
header file, units are in microvolts. Default scale factor is 1.
preload : bool
If True, all data are loaded at initialization.
If False, data are not read until save.
response_trig_shift : int | None
An integer that will be added to all response triggers when reading
events (stimulus triggers will be unaffected). This parameter was
deprecated in version 0.17 and will be removed in 0.18. Use
``trig_shift_by_type={'response': ...}`` instead. If None, response
triggers will be ignored. Default is 0 for backwards compatibility,
but typically another value or None will be necessary.
event_id : dict | None
Special events to consider in addition to those that follow the normal
BrainVision trigger format ('###' with an optional single character
prefix). If dict, the keys will be mapped to trigger values on the
stimulus channel. Example: {'SyncStatus': 1; 'Pulse Artifact': 3}.
If None or an empty dict (default), only BrainVision format events are
added to the stimulus channel. Keys are case sensitive. "New Segment"
markers are always dropped.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
trig_shift_by_type: dict | None
The names of marker types to which an offset should be added.
If dict, the keys specify marker types (case is ignored), so that the
corresponding value (an integer) will be added to the trigger value of
all events of this type. If the value for a key is in the dict is None,
all markers of this type will be ignored. If None (default), no offset
is added, which may lead to different marker types being mapped to the
same event id.
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
@verbose
def __init__(self, vhdr_fname, montage=None,
eog=('HEOGL', 'HEOGR', 'VEOGb'), misc='auto',
scale=1., preload=False, response_trig_shift=0,
event_id=None, verbose=None,
trig_shift_by_type=None): # noqa: D107
if response_trig_shift != 0:
warn(
"'response_trig_shift' was deprecated in version "
"0.17 and will be removed in 0.18. Use "
"trig_shift_by_type={{'response': {} }} instead".format(
response_trig_shift), DeprecationWarning)
if trig_shift_by_type and 'response' in (
key.lower() for key in trig_shift_by_type):
raise ValueError(
'offset for response markers has been specified twice, '
'both using "trig_shift_by_type" and '
'"response_trig_shift"')
else:
if trig_shift_by_type is None:
trig_shift_by_type = dict()
trig_shift_by_type['response'] = response_trig_shift
# Channel info and events
logger.info('Extracting parameters from %s...' % vhdr_fname)
vhdr_fname = op.abspath(vhdr_fname)
info, data_filename, fmt, order, mrk_fname, montage, n_samples = \
_get_vhdr_info(vhdr_fname, eog, misc, scale, montage)
self._order = order
self._n_samples = n_samples
_check_update_montage(info, montage)
with open(data_filename, 'rb') as f:
if isinstance(fmt, dict): # ASCII, this will be slow :(
if self._order == 'F': # multiplexed, channels in columns
n_skip = 0
for ii in range(int(fmt['skiplines'])):
n_skip += len(f.readline())
offsets = np.cumsum([n_skip] + [len(line) for line in f])
n_samples = len(offsets) - 1
elif self._order == 'C': # vectorized, channels, in rows
raise NotImplementedError()
else:
f.seek(0, os.SEEK_END)
n_samples = f.tell()
dtype_bytes = _fmt_byte_dict[fmt]
offsets = None
n_samples = n_samples // (dtype_bytes * (info['nchan'] - 1))
# Create a dummy event channel first
self._create_event_ch(np.empty((0, 3)), n_samples)
super(RawBrainVision, self).__init__(
info, last_samps=[n_samples - 1], filenames=[data_filename],
orig_format=fmt, preload=preload, verbose=verbose,
raw_extras=[offsets])
# Get annotations from vmrk file
annots = read_annotations_brainvision(mrk_fname, info['sfreq'])
self.set_annotations(annots)
# Use events_from_annotations to properly set the events
trig_shift_by_type = _check_trig_shift_by_type(trig_shift_by_type)
dropped_desc = [] # use to collect dropped descriptions
event_id = dict() if event_id is None else event_id
event_id = partial(_event_id_func, event_id=event_id,
trig_shift_by_type=trig_shift_by_type,
dropped_desc=dropped_desc)
events, _ = events_from_annotations(self, event_id)
if len(dropped_desc) > 0:
dropped = list(set(dropped_desc))
warn("{0} annotation(s) will be dropped, such as {1}. "
"Consider using ``regexp`` to ignore annotations that "
"do not follow a specific pattern."
.format(len(dropped), dropped[:5]))
self._create_event_ch(events, n_samples)
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
# read data
if self._order == 'C':
_read_segments_c(self, data, idx, fi, start, stop, cals, mult)
elif isinstance(self.orig_format, string_types):
dtype = _fmt_dtype_dict[self.orig_format]
n_data_ch = len(self.ch_names) - 1
_read_segments_file(self, data, idx, fi, start, stop, cals, mult,
dtype=dtype, n_channels=n_data_ch,
trigger_ch=self._event_ch)
else:
offsets = self._raw_extras[fi]
with open(self._filenames[fi], 'rb') as fid:
fid.seek(offsets[start])
block = np.empty((len(self.ch_names), stop - start))
for ii in range(stop - start):
line = fid.readline().decode('ASCII')
line = line.strip().replace(',', '.').split()
block[:-1, ii] = list(map(float, line))
block[-1] = self._event_ch[start:stop]
_mult_cal_one(data, block, idx, cals, mult)
def _get_brainvision_events(self):
"""Retrieve the events associated with the Brain Vision Raw object.
Returns
-------
events : array, shape (n_events, 3)
Events, each row consisting of an (onset, duration, trigger)
sequence.
"""
return self._events.copy()
def _set_brainvision_events(self, events):
"""Set the events and update the synthesized stim channel.
Parameters
----------
events : array, shape (n_events, 3)
Events, each row consisting of an (onset, duration, trigger)
sequence.
"""
self._create_event_ch(events)
def _create_event_ch(self, events, n_samp=None):
"""Create the event channel."""
if n_samp is None:
n_samp = self.last_samp - self.first_samp + 1
events = np.array(events, int)
if events.ndim != 2 or events.shape[1] != 3:
raise ValueError("[n_events x 3] shaped array required")
# update events
self._event_ch = _synthesize_stim_channel(events, n_samp)
self._events = events
if getattr(self, 'preload', False):
self._data[-1] = self._event_ch
def _read_segments_c(raw, data, idx, fi, start, stop, cals, mult):
"""Read chunk of vectorized raw data."""
n_samples = raw._n_samples
dtype = _fmt_dtype_dict[raw.orig_format]
n_bytes = _fmt_byte_dict[raw.orig_format]
n_channels = len(raw.ch_names)
trigger_ch = raw._event_ch
block = np.zeros((n_channels, stop - start))
with open(raw._filenames[fi], 'rb', buffering=0) as fid:
for ch_id in np.arange(n_channels)[idx]:
if ch_id == n_channels - 1: # stim channel
stim_ch = trigger_ch[start:stop]
block[ch_id] = stim_ch
continue
fid.seek(start * n_bytes + ch_id * n_bytes * n_samples)
block[ch_id] = np.fromfile(fid, dtype, stop - start)
_mult_cal_one(data, block, idx, cals, mult)
def _read_vmrk(fname):
"""Read annotations from a vmrk file.
Parameters
----------
fname : str
vmrk file to be read.
Returns
-------
onset : array, shape (n_annots,)
The onsets in seconds.
duration : array, shape (n_annots,)
The onsets in seconds.
description : array, shape (n_annots,)
The description of each annotation.
orig_time : str
The origin time as a string.
"""
# read vmrk file
with open(fname, 'rb') as fid:
txt = fid.read()
# we don't actually need to know the coding for the header line.
# the characters in it all belong to ASCII and are thus the
# same in Latin-1 and UTF-8
header = txt.decode('ascii', 'ignore').split('\n')[0].strip()
_check_mrk_version(header)
# although the markers themselves are guaranteed to be ASCII (they
# consist of numbers and a few reserved words), we should still
# decode the file properly here because other (currently unused)
# blocks, such as that the filename are specifying are not
# guaranteed to be ASCII.
try:
# if there is an explicit codepage set, use it
# we pretend like it's ascii when searching for the codepage
cp_setting = re.search('Codepage=(.+)',
txt.decode('ascii', 'ignore'),
re.IGNORECASE & re.MULTILINE)
codepage = 'utf-8'
if cp_setting:
codepage = cp_setting.group(1).strip()
# BrainAmp Recorder also uses ANSI codepage
# an ANSI codepage raises a LookupError exception
# python recognize ANSI decoding as cp1252
if codepage == 'ANSI':
codepage = 'cp1252'
txt = txt.decode(codepage)
except UnicodeDecodeError:
# if UTF-8 (new standard) or explicit codepage setting fails,
# fallback to Latin-1, which is Windows default and implicit
# standard in older recordings
txt = txt.decode('latin-1')
# extract Marker Infos block
m = re.search(r"\[Marker Infos\]", txt, re.IGNORECASE)
if not m:
return np.zeros((0, 3))
mk_txt = txt[m.end():]
m = re.search(r"^\[.*\]$", mk_txt)
if m:
mk_txt = mk_txt[:m.start()]
# extract event information
items = re.findall(r"^Mk\d+=(.*)", mk_txt, re.MULTILINE)
onset, duration, description = list(), list(), list()
date_str = None
for info in items:
mtype, mdesc, this_onset, this_duration = info.split(',')[:4]
if date_str is None and mtype == 'New Segment':
# to handle the origin of time and handle the presence of multiple
# New Segment annotations. We only keep the first one for date_str.
date_str = info.split(',')[-1]
this_duration = (int(this_duration)
if this_duration.isdigit() else 0)
duration.append(this_duration)
onset.append(int(this_onset) - 1) # BV is 1-indexed, not 0-indexed
description.append(mtype + '/' + mdesc)
return np.array(onset), np.array(duration), np.array(description), date_str
def _event_id_func(desc, event_id, trig_shift_by_type, dropped_desc):
"""Get integers from string description.
This function can be passed as event_id to events_from_annotations
function.
Parameters
----------
desc : str
The description of the event.
event_id : dict
The default mapping from desc to integer.
trig_shift_by_type: dict | None
The names of marker types to which an offset should be added.
If dict, the keys specify marker types (case is ignored), so that the
corresponding value (an integer) will be added to the trigger value of
all events of this type. If the value for a key is in the dict is None,
all markers of this type will be ignored. If None (default), no offset
is added, which may lead to different marker types being mapped to the
same event id.
dropped_desc : list
Used to log the dropped descriptions.
Returns
-------
trigger : int | None
The integer corresponding to the specific event. If None,
then a proper integer cannot be found and the event is typically
ignored.
"""
mtype, mdesc = desc.split('/')
found = False
if (mdesc in event_id) or (mtype == "New Segment"):
trigger = event_id.get(mdesc, None)
found = True
else:
try:
# Match any three digit marker value (padded with whitespace).
# In BrainVision Recorder, the markers sometimes have a prefix
# depending on the type, e.g., Stimulus=S, Response=R,
# Optical=O, ... Note that any arbitrary stimulus type can be
# defined. So we match any single character that is not
# forbidden by BrainVision Recorder: [^a-z$%\-@/\\|;,:.\s]
marker_regexp = r'^[^a-z$%\-@/\\|;,:.\s]{0,1}([\s\d]{2}\d{1})$'
trigger = int(re.findall(marker_regexp, mdesc)[0])
except IndexError:
trigger = None
if mtype.lower() in trig_shift_by_type:
cur_shift = trig_shift_by_type[mtype.lower()]
if cur_shift is not None:
trigger += cur_shift
else:
# The trigger has been deliberately shifted to None. Do not
# add this to "dropped" so we do not warn about something
# that was done deliberately. Just continue with next item.
trigger = None
found = True
if trigger is None and not found:
dropped_desc.append(desc)
return trigger
def _check_trig_shift_by_type(trig_shift_by_type):
"""Check the trig_shift_by_type parameter.
trig_shift_by_type is used to offset event numbers depending
of the type of marker (eg. Response, Stimulus).
"""
if trig_shift_by_type is None:
trig_shift_by_type = dict()
elif not isinstance(trig_shift_by_type, dict):
raise TypeError("'trig_shift_by_type' must be None or dict")
for mrk_type in list(trig_shift_by_type.keys()):
cur_shift = trig_shift_by_type[mrk_type]
if not isinstance(cur_shift, int) and cur_shift is not None:
raise TypeError('shift for type {} must be int or None'.format(
mrk_type
))
mrk_type_lc = mrk_type.lower()
if mrk_type_lc != mrk_type:
if mrk_type_lc in trig_shift_by_type:
raise ValueError('marker type {} specified twice with'
'different case'.format(mrk_type_lc))
trig_shift_by_type[mrk_type_lc] = cur_shift
del trig_shift_by_type[mrk_type]
return trig_shift_by_type
def read_annotations_brainvision(fname, sfreq='auto'):
"""Create Annotations from BrainVision vrmk.
This function reads a .vrmk file and makes an
:class:`mne.Annotations` object.
Parameters
----------
fname : str | object
The path to the .vmrk file.
sfreq : float | 'auto'
The sampling frequency in the file. It's necessary
as Annotations are expressed in seconds and vmrk
files are in samples. If set to 'auto' then
the sfreq is taken from the .vhdr file that
has the same name (without file extension). So
data.vrmk looks for sfreq in data.vhdr.
Returns
-------
annotations : instance of Annotations
The annotations present in the file.
"""
onset, duration, description, date_str = _read_vmrk(fname)
orig_time = _str_to_meas_date(date_str)
if sfreq == 'auto':
vhdr_fname = op.splitext(fname)[0] + '.vhdr'
logger.info("Finding 'sfreq' from header file: %s" % vhdr_fname)
_, _, _, info = _aux_vhdr_info(vhdr_fname)
sfreq = info['sfreq']
onset = np.array(onset, dtype=float) / sfreq
duration = np.array(duration, dtype=float) / sfreq
annotations = Annotations(onset=onset, duration=duration,
description=description,
orig_time=orig_time)
return annotations
def _check_hdr_version(header):
"""Check the header version."""
if header == 'Brain Vision Data Exchange Header File Version 1.0':
return 1
elif header == 'Brain Vision Data Exchange Header File Version 2.0':
return 2
else:
raise ValueError("Currently only support versions 1.0 and 2.0, not %r "
"Contact MNE-Developers for support." % header)
def _check_mrk_version(header):
"""Check the marker version."""
tags = ['Brain Vision Data Exchange Marker File, Version 1.0',
'Brain Vision Data Exchange Marker File Version 1.0',
'Brain Vision Data Exchange Marker File, Version 2.0']
if header not in tags:
raise ValueError("Currently only support %r, not %r"
"Contact MNE-Developers for support."
% (str(tags), header))
_orientation_dict = dict(MULTIPLEXED='F', VECTORIZED='C')
_fmt_dict = dict(INT_16='short', INT_32='int', IEEE_FLOAT_32='single')
_fmt_byte_dict = dict(short=2, int=4, single=4)
_fmt_dtype_dict = dict(short='<i2', int='<i4', single='<f4')
_unit_dict = {'V': 1., # V stands for Volt
u'µV': 1e-6,
'uV': 1e-6,
'nV': 1e-9,
'C': 1, # C stands for celsius
u'µS': 1e-6, # S stands for Siemens
u'uS': 1e-6,
u'ARU': 1, # ARU is the unity for the breathing data
'S': 1,
'N': 1} # Newton
def _str_to_meas_date(date_str):
date_str = date_str.strip()
if date_str in ['0', '00000000000000000000']:
return None
meas_date = datetime.strptime(date_str, '%Y%m%d%H%M%S%f')
# We need list of unix time in milliseconds and as second entry
# the additional amount of microseconds
epoch = datetime.utcfromtimestamp(0)
unix_time = (meas_date - epoch).total_seconds()
unix_secs = int(modf(unix_time)[1])
microsecs = int(modf(unix_time)[0] * 1e6)
return unix_secs, microsecs
def _aux_vhdr_info(vhdr_fname):
"""Aux function for _get_vhdr_info."""
with open(vhdr_fname, 'rb') as f:
# extract the first section to resemble a cfg
header = f.readline()
codepage = 'utf-8'
# we don't actually need to know the coding for the header line.
# the characters in it all belong to ASCII and are thus the
# same in Latin-1 and UTF-8
header = header.decode('ascii', 'ignore').strip()
_check_hdr_version(header)
settings = f.read()
try:
# if there is an explicit codepage set, use it
# we pretend like it's ascii when searching for the codepage
cp_setting = re.search('Codepage=(.+)',
settings.decode('ascii', 'ignore'),
re.IGNORECASE & re.MULTILINE)
if cp_setting:
codepage = cp_setting.group(1).strip()
# BrainAmp Recorder also uses ANSI codepage
# an ANSI codepage raises a LookupError exception
# python recognize ANSI decoding as cp1252
if codepage == 'ANSI':
codepage = 'cp1252'
settings = settings.decode(codepage)
except UnicodeDecodeError:
# if UTF-8 (new standard) or explicit codepage setting fails,
# fallback to Latin-1, which is Windows default and implicit
# standard in older recordings
settings = settings.decode('latin-1')
if settings.find('[Comment]') != -1:
params, settings = settings.split('[Comment]')
else:
params, settings = settings, ''
cfg = configparser.ConfigParser()
if hasattr(cfg, 'read_file'): # newer API
cfg.read_file(StringIO(params))
else:
cfg.readfp(StringIO(params))
# get sampling info
# Sampling interval is given in microsec
cinfostr = 'Common Infos'
if not cfg.has_section(cinfostr):
cinfostr = 'Common infos' # NeurOne BrainVision export workaround
# get sampling info
# Sampling interval is given in microsec
sfreq = 1e6 / cfg.getfloat(cinfostr, 'SamplingInterval')
info = _empty_info(sfreq)
return settings, cfg, cinfostr, info
def _get_vhdr_info(vhdr_fname, eog, misc, scale, montage):
"""Extract all the information from the header file.
Parameters
----------
vhdr_fname : str
Raw EEG header to be read.
eog : list of str
Names of channels that should be designated EOG channels. Names should
correspond to the vhdr file.
misc : list or tuple of str | 'auto'
Names of channels or list of indices that should be designated
MISC channels. Values should correspond to the electrodes
in the vhdr file. If 'auto', units in vhdr file are used for inferring
misc channels. Default is ``'auto'``.
scale : float
The scaling factor for EEG data. Unless specified otherwise by
header file, units are in microvolts. Default scale factor is 1.
montage : str | None | instance of Montage
Path or instance of montage containing electrode positions. If None,
read sensor locations from header file if present, otherwise (0, 0, 0).
See the documentation of :func:`mne.channels.read_montage` for more
information.
Returns
-------
info : Info
The measurement info.
fmt : str
The data format in the file.
edf_info : dict
A dict containing Brain Vision specific parameters.
events : array, shape (n_events, 3)
Events from the corresponding vmrk file.
"""
scale = float(scale)
ext = op.splitext(vhdr_fname)[-1]
if ext != '.vhdr':
raise IOError("The header file must be given to read the data, "
"not a file with extension '%s'." % ext)
settings, cfg, cinfostr, info = _aux_vhdr_info(vhdr_fname)
order = cfg.get(cinfostr, 'DataOrientation')
if order not in _orientation_dict:
raise NotImplementedError('Data Orientation %s is not supported'
% order)
order = _orientation_dict[order]
data_format = cfg.get(cinfostr, 'DataFormat')
if data_format == 'BINARY':
fmt = cfg.get('Binary Infos', 'BinaryFormat')
if fmt not in _fmt_dict:
raise NotImplementedError('Datatype %s is not supported' % fmt)
fmt = _fmt_dict[fmt]
else:
if order == 'C': # channels in rows
raise NotImplementedError('BrainVision files with ASCII data in '
'vectorized order (i.e. channels in rows'
') are not supported yet.')
fmt = dict((key, cfg.get('ASCII Infos', key))
for key in cfg.options('ASCII Infos'))
# locate EEG binary file and marker file for the stim channel
path = op.dirname(vhdr_fname)
data_filename = op.join(path, cfg.get(cinfostr, 'DataFile'))
mrk_fname = op.join(path, cfg.get(cinfostr, 'MarkerFile'))
# Try to get measurement date from marker file
# Usually saved with a marker "New Segment", see BrainVision documentation
regexp = r'^Mk\d+=New Segment,.*,\d+,\d+,\d+,(\d{20})$'
with open(mrk_fname, 'r') as tmp_mrk_f:
lines = tmp_mrk_f.readlines()
for line in lines:
match = re.findall(regexp, line.strip())
# Always take first measurement date we find
if match and match[0] != '00000000000000000000':
date_str = match[0]
info['meas_date'] = _str_to_meas_date(date_str)
break
else:
info['meas_date'] = None
# load channel labels
nchan = cfg.getint(cinfostr, 'NumberOfChannels') + 1
n_samples = None
if order == 'C':
try:
n_samples = cfg.getint(cinfostr, 'DataPoints')
except configparser.NoOptionError:
logger.warning('No info on DataPoints found. Inferring number of '
'samples from the data file size.')
with open(data_filename, 'rb') as fid:
fid.seek(0, 2)
n_bytes = fid.tell()
n_samples = n_bytes // _fmt_byte_dict[fmt] // (nchan - 1)
ch_names = [''] * nchan
cals = np.empty(nchan)
ranges = np.empty(nchan)
cals.fill(np.nan)
ch_dict = dict()
misc_chs = dict()
for chan, props in cfg.items('Channel Infos'):
n = int(re.findall(r'ch(\d+)', chan)[0]) - 1
props = props.split(',')
# default to microvolts because that's what the older brainvision
# standard explicitly assumed; the unit is only allowed to be
# something else if explicitly stated (cf. EEGLAB export below)
if len(props) < 4:
props += (u'µV',)
name, _, resolution, unit = props[:4]
ch_dict[chan] = name
ch_names[n] = name
if resolution == "":
if not(unit): # For truncated vhdrs (e.g. EEGLAB export)
resolution = 0.000001
else:
resolution = 1. # for files with units specified, but not res
unit = unit.replace(u'\xc2', u'') # Remove unwanted control characters
cals[n] = float(resolution)
ranges[n] = _unit_dict.get(unit, 1) * scale
if unit not in ('V', 'nV', u'µV', 'uV'):
misc_chs[name] = (FIFF.FIFF_UNIT_CEL if unit == 'C'
else FIFF.FIFF_UNIT_NONE)
misc = list(misc_chs.keys()) if misc == 'auto' else misc
# create montage
if cfg.has_section('Coordinates') and montage is None:
from ...transforms import _sph_to_cart
from ...channels.montage import Montage
montage_pos = list()
montage_names = list()
to_misc = list()
for ch in cfg.items('Coordinates'):
ch_name = ch_dict[ch[0]]
montage_names.append(ch_name)
radius, theta, phi = map(float, ch[1].split(','))
# 1: radius, 2: theta, 3: phi
pol = np.deg2rad(theta)
az = np.deg2rad(phi)
pos = _sph_to_cart(np.array([[radius * 85., az, pol]]))[0]
if (pos == 0).all() and ch_name not in list(eog) + misc:
to_misc.append(ch_name)
montage_pos.append(pos)
montage_sel = np.arange(len(montage_pos))
montage = Montage(montage_pos, montage_names, 'Brainvision',
montage_sel)
if len(to_misc) > 0:
misc += to_misc
warn('No coordinate information found for channels {}. '
'Setting channel types to misc. To avoid this warning, set '
'channel types explicitly.'.format(to_misc))
ch_names[-1] = 'STI 014'
cals[-1] = 1.
ranges[-1] = 1.
if np.isnan(cals).any():
raise RuntimeError('Missing channel units')
# Attempts to extract filtering info from header. If not found, both are
# set to zero.
settings = settings.splitlines()
idx = None
if 'Channels' in settings:
idx = settings.index('Channels')
settings = settings[idx + 1:]
hp_col, lp_col = 4, 5
for idx, setting in enumerate(settings):
if re.match(r'#\s+Name', setting):
break
else:
idx = None
# If software filters are active, then they override the hardware setup
# But we still want to be able to double check the channel names
# for alignment purposes, we keep track of the hardware setting idx
idx_amp = idx
if 'S o f t w a r e F i l t e r s' in settings:
idx = settings.index('S o f t w a r e F i l t e r s')
for idx, setting in enumerate(settings[idx + 1:], idx + 1):
if re.match(r'#\s+Low Cutoff', setting):
hp_col, lp_col = 1, 2
warn('Online software filter detected. Using software '
'filter settings and ignoring hardware values')
break
else:
idx = idx_amp
if idx:
lowpass = []
highpass = []
# for newer BV files, the unit is specified for every channel
# separated by a single space, while for older files, the unit is
# specified in the column headers
divider = r'\s+'
if 'Resolution / Unit' in settings[idx]:
shift = 1 # shift for unit
else:
shift = 0
# Extract filter units and convert from seconds to Hz if necessary.
# this cannot be done as post-processing as the inverse t-f
# relationship means that the min/max comparisons don't make sense
# unless we know the units.
#
# For reasoning about the s to Hz conversion, see this reference:
# `Ebersole, J. S., & Pedley, T. A. (Eds.). (2003).
# Current practice of clinical electroencephalography.
# Lippincott Williams & Wilkins.`, page 40-41
header = re.split(r'\s\s+', settings[idx])
hp_s = '[s]' in header[hp_col]
lp_s = '[s]' in header[lp_col]
for i, ch in enumerate(ch_names[:-1], 1):
line = re.split(divider, settings[idx + i])
# double check alignment with channel by using the hw settings
if idx == idx_amp:
line_amp = line
else:
line_amp = re.split(divider, settings[idx_amp + i])
assert ch in line_amp
highpass.append(line[hp_col + shift])
lowpass.append(line[lp_col + shift])
if len(highpass) == 0:
pass
elif len(set(highpass)) == 1:
if highpass[0] in ('NaN', 'Off'):
pass # Placeholder for future use. Highpass set in _empty_info
elif highpass[0] == 'DC':
info['highpass'] = 0.
else:
info['highpass'] = float(highpass[0])
if hp_s:
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info['highpass'] = 1. / (2 * np.pi * info['highpass'])
else:
heterogeneous_hp_filter = True
if hp_s:
# We convert channels with disabled filters to having
# highpass relaxed / no filters
highpass = [float(filt) if filt not in ('NaN', 'Off', 'DC')
else np.Inf for filt in highpass]
info['highpass'] = np.max(np.array(highpass, dtype=np.float))
# Coveniently enough 1 / np.Inf = 0.0, so this works for
# DC / no highpass filter
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info['highpass'] = 1. / (2 * np.pi * info['highpass'])
# not exactly the cleanest use of FP, but this makes us
# more conservative in *not* warning.
if info['highpass'] == 0.0 and len(set(highpass)) == 1:
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_hp_filter = False
else:
highpass = [float(filt) if filt not in ('NaN', 'Off', 'DC')
else 0.0 for filt in highpass]
info['highpass'] = np.min(np.array(highpass, dtype=np.float))
if info['highpass'] == 0.0 and len(set(highpass)) == 1:
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_hp_filter = False
if heterogeneous_hp_filter:
warn('Channels contain different highpass filters. '
'Lowest (weakest) filter setting (%0.2f Hz) '
'will be stored.' % info['highpass'])
if len(lowpass) == 0:
pass
elif len(set(lowpass)) == 1:
if lowpass[0] in ('NaN', 'Off'):
pass # Placeholder for future use. Lowpass set in _empty_info
else:
info['lowpass'] = float(lowpass[0])
if lp_s:
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info['lowpass'] = 1. / (2 * np.pi * info['lowpass'])
else:
heterogeneous_lp_filter = True
if lp_s:
# We convert channels with disabled filters to having
# infinitely relaxed / no filters
lowpass = [float(filt) if filt not in ('NaN', 'Off')
else 0.0 for filt in lowpass]
info['lowpass'] = np.min(np.array(lowpass, dtype=np.float))
try:
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info['lowpass'] = 1. / (2 * np.pi * info['lowpass'])
except ZeroDivisionError:
if len(set(lowpass)) == 1:
# No lowpass actually set for the weakest setting
# so we set lowpass to the Nyquist frequency
info['lowpass'] = info['sfreq'] / 2.
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_lp_filter = False
else:
# no lowpass filter is the weakest filter,
# but it wasn't the only filter
pass
else:
# We convert channels with disabled filters to having
# infinitely relaxed / no filters
lowpass = [float(filt) if filt not in ('NaN', 'Off')
else np.Inf for filt in lowpass]
info['lowpass'] = np.max(np.array(lowpass, dtype=np.float))
if np.isinf(info['lowpass']):
# No lowpass actually set for the weakest setting
# so we set lowpass to the Nyquist frequency
info['lowpass'] = info['sfreq'] / 2.
if len(set(lowpass)) == 1:
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_lp_filter = False
if heterogeneous_lp_filter:
# this isn't clean FP, but then again, we only want to provide
# the Nyquist hint when the lowpass filter was actually
# calculated from dividing the sampling frequency by 2, so the
# exact/direct comparison (instead of tolerance) makes sense
if info['lowpass'] == info['sfreq'] / 2.0:
nyquist = ', Nyquist limit'
else:
nyquist = ""
warn('Channels contain different lowpass filters. '
'Highest (weakest) filter setting (%0.2f Hz%s) '
'will be stored.' % (info['lowpass'], nyquist))
# Creates a list of dicts of eeg channels for raw.info
logger.info('Setting channel info structure...')
info['chs'] = []
for idx, ch_name in enumerate(ch_names):
if ch_name in eog or idx in eog or idx - nchan in eog:
kind = FIFF.FIFFV_EOG_CH
coil_type = FIFF.FIFFV_COIL_NONE
unit = FIFF.FIFF_UNIT_V
elif ch_name in misc or idx in misc or idx - nchan in misc:
kind = FIFF.FIFFV_MISC_CH
coil_type = FIFF.FIFFV_COIL_NONE
if ch_name in misc_chs:
unit = misc_chs[ch_name]
else:
unit = FIFF.FIFF_UNIT_NONE
elif ch_name == 'STI 014':
kind = FIFF.FIFFV_STIM_CH
coil_type = FIFF.FIFFV_COIL_NONE
unit = FIFF.FIFF_UNIT_NONE
else:
kind = FIFF.FIFFV_EEG_CH
coil_type = FIFF.FIFFV_COIL_EEG
unit = FIFF.FIFF_UNIT_V
info['chs'].append(dict(
ch_name=ch_name, coil_type=coil_type, kind=kind, logno=idx + 1,
scanno=idx + 1, cal=cals[idx], range=ranges[idx],
loc=np.full(12, np.nan),
unit=unit, unit_mul=0., # always zero- mne manual pg. 273
coord_frame=FIFF.FIFFV_COORD_HEAD))
info._update_redundant()
info._check_consistency()
return info, data_filename, fmt, order, mrk_fname, montage, n_samples
def read_raw_brainvision(vhdr_fname, montage=None,
eog=('HEOGL', 'HEOGR', 'VEOGb'), misc='auto',
scale=1., preload=False, response_trig_shift=0,
event_id=None, verbose=None,
trig_shift_by_type=None):
"""Reader for Brain Vision EEG file.
Parameters
----------
vhdr_fname : str
Path to the EEG header file.
montage : str | None | instance of Montage
Path or instance of montage containing electrode positions.
If None, sensor locations are (0,0,0). See the documentation of
:func:`mne.channels.read_montage` for more information.
eog : list or tuple of str
Names of channels or list of indices that should be designated
EOG channels. Values should correspond to the vhdr file
Default is ``('HEOGL', 'HEOGR', 'VEOGb')``.
misc : list or tuple of str | 'auto'
Names of channels or list of indices that should be designated
MISC channels. Values should correspond to the electrodes
in the vhdr file. If 'auto', units in vhdr file are used for inferring
misc channels. Default is ``'auto'``.
scale : float
The scaling factor for EEG data. Unless specified otherwise by
header file, units are in microvolts. Default scale factor is 1.
preload : bool
If True, all data are loaded at initialization.
If False, data are not read until save.
response_trig_shift : int | None
An integer that will be added to all response triggers when reading
events (stimulus triggers will be unaffected). This parameter was
deprecated in version 0.17 and will be removed in 0.19. Use
``trig_shift_by_type={'response': ...}`` instead. If None, response
triggers will be ignored. Default is 0 for backwards compatibility,
but typically another value or None will be necessary.
event_id : dict | None
Special events to consider in addition to those that follow the normal
BrainVision trigger format ('###' with an optional single character
prefix). If dict, the keys will be mapped to trigger values on the
stimulus channel. Example: {'SyncStatus': 1; 'Pulse Artifact': 3}.
If None or an empty dict (default), only BrainVision format events are
added to the stimulus channel. Keys are case sensitive. "New Segment"
markers are always dropped.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`