-
Notifications
You must be signed in to change notification settings - Fork 18
/
stiffnessMtrx.py
877 lines (745 loc) · 40.7 KB
/
stiffnessMtrx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
# yapf: disable
"""
construct the stiffness matrix
"""
import taichi as ti
import numpy as np
import time; from typing import Tuple, Union
from body import Body
from reader.inp_info_base import InpInfoBase
from conjugateGradientSolver import ConjugateGradientSolver_rowMajor as CG
import user_defined as ud
import tiGadgets as tg
import scipy.sparse as sp
import scipy.sparse.linalg as sl
import copy
@ti.data_oriented
class System_of_equations:
"""
use stiffness matrix and rhs (right hand side) to solve dof (degree of freedom)
including:
sparseMtrx: the sparse stiffness matrix utilized to solve the dofs
rhs: right hand side of the equation system
"""
def __init__(self, body: Body, material, geometric_nonlinear: bool):
self.dm = body.dm # spatial dimension of the system
self.geometric_nonlinear = geometric_nonlinear
self.body = body
self.elements, self.nodes = body.elements, body.nodes
### sparseMtrx @ dof = rhs
self.rhs = ti.field(ti.f64, shape=(body.nodes.shape[0] * body.dm, )) # right hand side of the equation system
self.dof = ti.field(ti.f64, shape=(body.nodes.shape[0] * body.dm, )) # degree of freedom that needs to be solved
### define the element types of the body
self.ELE = body.ELE
### deformation gradient
self.F = ti.Matrix.field(self.dm, self.dm, ti.f64,
shape=(self.elements.shape[0], self.ELE.gaussPoints.shape[0]))
### stress and strain (infinitesimal strain for small deformation and Green strain for large deformation)
self.cauchy_stress = ti.Matrix.field(self.dm, self.dm, ti.f64,
shape=(self.elements.shape[0], self.ELE.gaussPoints.shape[0]))
self.strain = ti.Matrix.field(self.dm, self.dm, ti.f64,
shape=(self.elements.shape[0], self.ELE.gaussPoints.shape[0]))
self.mises_stress = ti.field(ti.f64,
shape=(self.elements.shape[0], self.ELE.gaussPoints.shape[0]))
self.elsEngDens = ti.field(ti.f64, # elastic energy density
shape=(self.elements.shape[0], self.ELE.gaussPoints.shape[0]))
self.elsEng = ti.field(ti.f64, shape=()) # total elastic energy
### variables related to geometric nonlinear
self.nodal_force = ti.field(ti.f64, shape=(self.dm * self.body.nodes.shape[0]))
self.residual_nodal_force = ti.field(ti.f64, shape=(body.nodes.shape[0] * body.dm, ))
### dsdx (derivative of shape functio with respect to current coordinate), and volume of each guass point
self.dsdx = ti.Matrix.field(self.elements[0].n, self.dm, ti.f64,
shape=(self.elements.shape[0], self.ELE.gaussPoints.shape[0]))
self.vol = ti.field(ti.f64, shape=(self.elements.shape[0], self.ELE.gaussPoints.shape[0]))
### constitutive material (e.g., elastic constants) of each element
self.material = material; self.C = material.C
self.ddsdde = ti.Matrix.field(n=material.C.n, m=material.C.m, dtype=ti.f64,
shape=(self.elements.shape[0], self.ELE.gaussPoints.shape[0]))
self.ddsdde_init()
### link a node to the related elements
body.get_nodeEles()
maxLen = max(len(eles) for eles in body.nodeEles)
self.nodeEles = ti.Vector.field(maxLen, ti.i32, shape=(self.nodes.shape[0], ))
nodeEles = -np.ones((body.nodes.shape[0], maxLen))
for node in range(len(nodeEles)):
nodeEles[node, 0:len(body.nodeEles[node])] = body.nodeEles[node][:]
self.nodeEles.from_numpy(nodeEles)
### get the sparseIJ (index 0 of each row stores the number of effective indexes in this row)
body.get_coElement_nodes()
maxLen = max(len(body.coElement_nodes[node]) for node in range(body.nodes.shape[0]))
self.sparseIJ = ti.Vector.field(maxLen * self.dm + 1, ti.i32,
shape=(self.nodes.shape[0] * self.dm, ))
sparseIJ = -np.ones((self.nodes.shape[0] * self.dm, maxLen * self.dm + 1))
for node0 in range(self.nodes.shape[0]):
js = [node1 * self.dm + i for node1 in body.coElement_nodes[node0] for i in range(self.dm)]
for i in range(self.dm):
sparseIJ[node0 * self.dm + i][1:len(js)+1] = js[:]
sparseIJ[node0 * self.dm + i][0] = len(js)
self.sparseIJ.from_numpy(sparseIJ)
### init the row major form of sparse matrix
print("\033[32;1m shape of the sparseIJ is {} \033[0m".format(self.sparseIJ.shape))
self.sparseMtrx_rowMajor = ti.Vector.field(self.sparseIJ[0].n - 1, ti.f64,
shape=(self.sparseIJ.shape[0], ))
self.du = ti.field(ti.f64, shape=(self.nodes.shape[0] * self.dm))
### sparse matrix (indexes and elements) prepared for scipy
self.rows, self.cols = [], [] # indexes of rows and coloums
sparseIJ = self.sparseIJ.to_numpy()
for i in range(sparseIJ.shape[0]):
for j_ in range(sparseIJ[i, 0]):
j = sparseIJ[i, j_ + 1]
self.rows.append(i)
self.cols.append(j)
self.rows, self.cols = np.array(self.rows), np.array(self.cols)
self.sparseIJ_np = sparseIJ
self.K = np.zeros(shape=(self.rows.shape[0],), dtype=np.float64)
### initial variables related to time increments
self.time0 = 0.; self.time1 = 0.
self.dt = 0.
# degree of freedom at last time step
self.dof_old = ti.field(ti.f64, shape=(body.nodes.shape[0] * body.dm, ))
### some variables for print
self.compiled = False # indicate whether the assemble_sparseMtrx has been compiled
# a field for visualization, you can visualize some idexes of stress or strain
self.visualize_field = ti.field(ti.f64,
shape=(self.elements.shape[0], self.ELE.gaussPoints.shape[0]))
self.nodal_vals = ti.Vector.field(self.elements[0].n, ti.f64,
shape=(self.elements.shape[0],)) # visualization of nodal strain or stress
@ti.kernel
def ddsdde_init(self, ):
"""get the ddsdde (material Jacobian, ∂Δσ/∂Δε)
at each integration point of each element"""
for ele, igp in self.ddsdde:
self.ddsdde[ele, igp] = self.C
@ti.kernel
def get_dsdx_and_vol(self, ):
"""update dsdx (∇N) and volume before assemble stiffness matrix"""
dm, elements, nodes, dof, gaussPoints = ti.static(
self.dm, self.elements, self.nodes, self.dof, self.ELE.gaussPoints)
for ele in self.elements:
localNodes = ti.Matrix.zero(ti.f64, elements[0].n, dm)
for i in range(localNodes.n):
for j in range(localNodes.m):
localNodes[i, j] = nodes[elements[ele][i]][j] + \
dof[elements[ele][i] * dm + j] # nodes coos at current configuration
### get dsdx and vol of each integration point
for igp in range(gaussPoints.shape[0]):
gp = gaussPoints[igp]
dsdn = self.ELE.dshape_dnat(gp) # derivative of shape function with respect to natural coodinates
dnatdx = (localNodes.transpose() @ dsdn).inverse() # at current configuration
self.dsdx[ele, igp] = dsdn @ dnatdx # dshape / dx, gradient at current configuration
self.vol[ele, igp] = (localNodes.transpose() @ dsdn).determinant() * self.ELE.gaussWeights[igp]
def assemble_sparseMtrx(self, ):
tiMatrixShape = self.elements[0].n * self.dm
if tiMatrixShape <= 10: # involve small ti.Matrix()
self.assemble_stiffnessMtrx()
else: # involve large ti.Matrix(), use faster version to save compile time
self.assemble_stiffnessMtrx_faster()
@ti.kernel
def assemble_stiffnessMtrx(self, ):
"""assemble sitffness matrix, parallel by integration points,
update self.dsdx (∇N) and self.vol before assemble this"""
dm, sparseMtrx_rowMajor, elements, ddsdde, vol, dsdx = ti.static(
self.body.dm, self.sparseMtrx_rowMajor, self.elements, self.ddsdde, self.vol, self.dsdx)
sparseMtrx_rowMajor.fill(0.)
for ele, igp in vol: # parallel by integration points
strain = self.ELE.strainMtrx(dsdx[ele, igp]) # strain B(∇N), B·u = ε
stress_voigt = ddsdde[ele, igp] @ strain # stress = C·B
bcb = strain.transpose() @ stress_voigt # stiffness, BT·C·B
Js = ti.Vector([x + i for x in elements[ele]*dm for i in range(dm)])
### integrate to the large sparse matrix
for node in range(elements[ele].n):
node0 = elements[ele][node] # global node index
for i_local in range(dm):
i_global = node0 * dm + i_local
for j_local in range(Js.n):
j_global = Js[j_local]
j = self.sparseMatrix_get_j(i_global, j_global)
### atomic add to related node
sparseMtrx_rowMajor[i_global][j] += \
bcb[node*dm+i_local, j_local] * vol[ele, igp]
@ti.kernel
def assemble_stiffnessMtrx_faster(self, ):
"""assemble sitffness matrix, parallel by elements,
compiles faster by ∇N·C·B instead of BT·C·B
(also, update self.dsdx (∇N) and self.vol before assemble this)"""
dm, sparseMtrx_rowMajor, elements, ddsdde, vol = ti.static(
self.body.dm, self.sparseMtrx_rowMajor, self.elements, self.ddsdde, self.vol)
sparseMtrx_rowMajor.fill(0.)
for ele, igp in vol: # parallel by integration points
dsdx = self.dsdx[ele, igp] # ∇N, the updated grad of shape function
strain = self.ELE.strainMtrx(dsdx) # strain B(∇N), B·u = ε
stress_voigt = ddsdde[ele, igp] @ strain # stress = C·B
### integrate to the large sparse matrix
for node in range(elements[ele].n):
### dsdx mutiplies the stress, ∇N·C·B, compile faster than BT·C·B
dsdx_x_stress = tg.vec_mul_voigtMtrx(dsdx[node, :], stress_voigt)
node0 = elements[ele][node] # global node index
Js = ti.Vector([x + i for x in elements[ele]*dm for i in range(dm)])
for i_local in range(dm):
i_global = node0 * dm + i_local
for j_local in range(Js.n):
j_global = Js[j_local]
j = self.sparseMatrix_get_j(i_global, j_global)
### atomic add to related node
sparseMtrx_rowMajor[i_global][j] += \
dsdx_x_stress[i_local, j_local] * vol[ele, igp]
def solve_by_scipy(self, ):
### conver some field to np.array
sparseIJ = self.sparseIJ_np
sparseMtrx_rowMajor = self.sparseMtrx_rowMajor.to_numpy()
### fetch the sparse matrix
id = -1
for i in range(sparseIJ.shape[0]):
for j_ in range(sparseIJ[i, 0]):
id += 1
self.K[id] = sparseMtrx_rowMajor[i, j_]
time0 = time.time()
K = sp.csr_matrix((self.K, (self.rows, self.cols)),
shape=(sparseIJ.shape[0],
sparseIJ.shape[0]), dtype=np.float64)
### solve the sparse matrix equation AX = B
if not self.geometric_nonlinear:
self.du.from_numpy(sl.spsolve(K, self.rhs.to_numpy()))
else:
self.du.from_numpy(sl.spsolve(K, self.residual_nodal_force.to_numpy()))
time1 = time.time()
print(f"\033[32;1m assuming time for sparse matrix solving "
f"in scipy is {time1 - time0} s \033[0m")
if not self.geometric_nonlinear:
self.dof = self.du
else:
### self.dof = self.dof - solver.x (in Newton's method)
tg.c_equals_a_minus_b(self.dof, self.dof, self.du)
return self.du
def solve_by_CG(self):
if not hasattr (self, "PCG"):
if not self.geometric_nonlinear:
self.PCG = CG(spm=self.sparseMtrx_rowMajor, sparseIJ=self.sparseIJ, b=self.rhs)
else:
self.PCG = CG(spm=self.sparseMtrx_rowMajor, sparseIJ=self.sparseIJ, b=self.residual_nodal_force)
self.PCG.re_init()
self.PCG.solve()
if not self.geometric_nonlinear:
self.dof = self.PCG.x
else:
### self.dof = self.dof - solver.x (in Newton's method)
tg.c_equals_a_minus_b(self.dof, self.dof, self.PCG.x)
return self.PCG.x
def solve_dof(self, ):
if self.dof.shape[0] < 1e5: # critical matrix size
return self.solve_by_scipy() # direct method
else:
return self.solve_by_CG() # CG (can parallel by gpu)
@ti.kernel
def dirichletBC_linearEquations(self,
nodeSet: ti.template(), dm_specified: int, # the specified dimendion of dirichlet BC
sval: float, # specific value of dirichlet boundary condition
):
"""apply dirichlet boundary condition to the body
modify the sparse matrix and the rhs (right hand side)
this is for linear equation systems"""
### impose dirichlet BC at specific nodes
for node_ in nodeSet:
node = nodeSet[node_]
i_global = node * self.dm + dm_specified
### modify the right hand side
for j0 in range(self.sparseIJ[i_global][0]):
j_global = self.sparseIJ[i_global][j0 + 1]
### use the symmetric property of the sparse matrix, find sparseMtrx[j_global, i_global]
i0 = self.sparseMatrix_get_j(j_global, i_global)
self.rhs[j_global] = self.rhs[j_global] - sval * self.sparseMtrx_rowMajor[j_global][i0]
self.rhs[i_global] = sval
### modify the sparse matrix
for j0 in range(self.sparseIJ[i_global][0]):
j_global = self.sparseIJ[i_global][j0 + 1]
self.sparseMtrx_rowMajor[i_global][j0] = 0.
i0 = self.sparseMatrix_get_j(j_global, i_global)
self.sparseMtrx_rowMajor[j_global][i0] = 0.
i0 = self.sparseMatrix_get_j(i_global, i_global)
self.sparseMtrx_rowMajor[i_global][i0] = 1.
def dirichletBC_forNewtonMethod(self, dirichletBCs):
for dirichletBC in dirichletBCs:
self.dirichletBC_dof(dirichletBC["node_set"], dirichletBC["dof"],
dirichletBC["val"], dirichletBC["user"], self.time1)
self.dirichletBC_forNewtonMethod_kernel(nodeSet=dirichletBC["node_set"],
dm_specified=dirichletBC["dof"],
sval=dirichletBC["val"])
@ti.kernel
def dirichletBC_forNewtonMethod_kernel(self,
nodeSet: ti.template(), dm_specified: int, # the specified dimendion of dirichlet BC
sval: float, # specific value of dirichlet boundary condition
):
"""apply dirichlet boundary condition to the body
modify the sparse matrix and the residual force
this is for Newton method, ref: https://scorec.rpi.edu/~granzb/notes/dbcs/dbcs.pdf """
### impose dirichlet BC at residual force and sparse matrix
for node_ in nodeSet:
node = nodeSet[node_]
i_global = node * self.dm + dm_specified
### modify the residual force
self.residual_nodal_force[i_global] = 0.
### modify the sparse matrix (i.e., the Jacobian)
for j0 in range(self.sparseIJ[i_global][0]):
j_global = self.sparseIJ[i_global][j0 + 1]
self.sparseMtrx_rowMajor[i_global][j0] = 0.
i0 = self.sparseMatrix_get_j(j_global, i_global)
self.sparseMtrx_rowMajor[j_global][i0] = 0.
i0 = self.sparseMatrix_get_j(i_global, i_global)
self.sparseMtrx_rowMajor[i_global][i0] = 1.
def dirichletBC_dof(self,
nodeSet: ti.template(), dm_specified: int, # the specified dimendion of dirichlet BC
sval: float, # specific value of dirichlet boundary condition
user: bool, # ture means using user defined boundary condition
time: float,
):
if not user:
self.dirichletBC_val(nodeSet, dm_specified, sval)
else:
ud.user_dirichletBC(
self.dof, nodeSet, self.dm, dm_specified, self.nodes, time)
@ti.kernel
def dirichletBC_val(self,
nodeSet: ti.template(), dm_specified: int, # the specified dimendion of dirichlet BC
sval: float, # specific value of dirichlet boundary condition
):
### impose dirichlet BC at dof
for node_ in nodeSet:
node = nodeSet[node_]
i_global = node * self.dm + dm_specified
self.dof[i_global] = sval
def neumannBC(self, load_facets, load_val: float, load_dir=np.array([])): # Neumann boundary condition,
# should be modified latter to taichi version!!!
"""
load_facets: list(tuple), the boundary facets with load (i.e., the boundary with specific flux value)
freeload_facets: boundary without specified value of flux(field gradient)
if no load in the surface, flux term doesn't need to be computed, because:
1. free surface, with no traction force on the surface, thus the flux term is 0
2. surface with Dirichlet BC, nodal displacement is specified,
flux term is not 0, but can be automatically deduced from Dirichlet BC
(technically, this term doesn't need to be computed,
because after zero-one setting method for DirichletBC, the effort here will be erased)
"""
body = self.body; ELE = self.ELE
body.get_boundary()
self.rhs.fill(0.) # refresh the right hand side before apply Neumann BC
for facet in load_facets:
ele = body.boundary[facet]
for node0 in facet: # traction force of this facet applies to node0
### obtain the facet normals on the free-load boundary
### (points to the outside of the element)
localNodes = np.array([body.np_nodes[node, :] for node in body.np_elements[ele, :]])
eleNodesList = body.np_elements[ele, :].tolist()
localFacet = [eleNodesList.index(i) for i in facet]
for integId in range(ELE.integPointNum_eachFacet):
normal_vector, area_x_weight = ELE.globalNormal(nodes=localNodes,
facet=localFacet,
integPointId=integId)
### get the flux, which can also be interpreted as traction force
if len(load_dir) == 0:
flux = load_val * normal_vector * area_x_weight
else:
flux = load_val * load_dir * area_x_weight
### get the sequence of this node in the element
natCoo = ELE.facet_natural_coos[tuple(sorted(localFacet))][integId]
nid = list(body.np_elements[ele, :]).index(node0)
shapeVal = ELE.shapeFunc_pyscope(natCoo)[nid]
for i in range(self.dm):
self.rhs[node0*self.dm + i] += flux[i] * shapeVal
@ti.func
def sparseMatrix_get_j(self, i_global, j_global):
j_local = 0
for j in range(self.sparseIJ[i_global][0]):
if self.sparseIJ[i_global][j + 1] == j_global:
j_local = j
return j_local
def check_sparseIJ(self, ):
"""check whether indexes repeatly appear in sparseIJ"""
for i in range(self.sparseIJ.shape[0]):
js = set()
for j0 in range(self.sparseIJ[i][0]):
j = self.sparseIJ[i][j0 + 1]
if j != -1:
if j in js:
print("\033[31;1m error, {}, {} appear repeatly \033[0m".format(i, j))
else:
js.add(j)
def compute_strain_stress(self, ):
### get the strain
self.get_deformation_gradient()
if not self.geometric_nonlinear:
self.get_strain_smallDeformation()
else:
self.get_strain_largeDeformation()
### get the stress
if not self.geometric_nonlinear:
self.material.constitutiveOfSmallDeform(self.F, self.cauchy_stress, self.ddsdde)
else:
pass # stress has been computed for geometric nonlinear case
### compute mises stress
if self.material.type == "planeStrain":
self.get_mises_stress_planeStrain()
elif self.material.type == "planeStress":
self.get_mises_stress_planeStress()
else:
self.get_mises_stress_3d()
@ti.kernel
def get_mises_stress_planeStress(self, ):
eye = ti.Matrix([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
for ele in self.elements:
for igp in range(self.ELE.gaussPoints.shape[0]):
stress_2d = self.cauchy_stress[ele, igp]
stress = ti.Matrix([
[stress_2d[0, 0], stress_2d[0, 1], 0.],
[stress_2d[1, 0], stress_2d[1, 1], 0.],
[0., 0., 0.],
])
deviatoric_stress = stress - eye * stress.trace() / 3.
self.mises_stress[ele, igp] = (3./2. * (deviatoric_stress * deviatoric_stress).sum())**0.5
@ti.kernel
def get_mises_stress_planeStrain(self, ):
nu = self.material.poisson_ratio
eye = ti.Matrix([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
for ele in self.elements:
for igp in range(self.ELE.gaussPoints.shape[0]):
stress_2d = self.cauchy_stress[ele, igp]
stress = ti.Matrix([
[stress_2d[0, 0], stress_2d[0, 1], 0.],
[stress_2d[1, 0], stress_2d[1, 1], 0.],
[0., 0., nu * (stress_2d[0, 0] + stress_2d[1, 1])],
])
deviatoric_stress = stress - eye * stress.trace() / 3.
self.mises_stress[ele, igp] = (3./2. * (deviatoric_stress * deviatoric_stress).sum())**0.5
@ti.kernel
def get_mises_stress_3d(self, ):
eye = ti.Matrix([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
for ele in self.elements:
for igp in range(self.ELE.gaussPoints.shape[0]):
stress = self.cauchy_stress[ele, igp]
deviatoric_stress = stress - eye * stress.trace() / 3.
self.mises_stress[ele, igp] = (3./2. * (deviatoric_stress * deviatoric_stress).sum())**0.5
def impose_boundary_condition(self, boundary_conditions: dict):
### =========== apply the boundary condition ===========
neumannBCs = boundary_conditions["neumannBCs"]
dirichletBCs = boundary_conditions["dirichletBCs"]
### first, apply Neumann BC
for neumannBC in neumannBCs:
if "direction" in neumannBC:
self.neumannBC(neumannBC["face_set"],
load_val=neumannBC["traction"],
load_dir=neumannBC["direction"])
else:
self.neumannBC(neumannBC["face_set"],
load_val=neumannBC["traction"])
### then, apply Dirichlet BC
if self.geometric_nonlinear == False:
for dirichletBC in dirichletBCs:
self.dirichletBC_linearEquations(
dirichletBC["node_set"], dirichletBC["dof"],
dirichletBC["val"])
else: # large deformation (geometric nonlinear), dirichlet BC is imposed latter at Newton's method
for dirichletBC in dirichletBCs:
self.dirichletBC_dof(
dirichletBC["node_set"], dirichletBC["dof"],
dirichletBC["val"], dirichletBC["user"], self.time1)
@ti.kernel
def get_deformation_gradient(self, ):
"""get the deformation gradient of each integration point"""
dm, elements, nodes, gaussPoints = ti.static(
self.dm, self.elements, self.nodes, self.ELE.gaussPoints)
eye = ti.Matrix.zero(ti.f64, dm, dm)
for i in range(eye.n):
eye[i, i] = 1.
for ele in elements:
local_us = ti.Matrix.zero(ti.f64, elements[0].n, dm)
local_nodes = ti.Matrix.zero(ti.f64, elements[0].n, dm)
for node_ in range(elements[0].n):
node = elements[ele][node_]
for j in ti.static(range(dm)):
local_us[node_, j] = self.dof[node * dm + j] # e.g., displacement
local_nodes[node_, j] = nodes[node][j]
for igp in range(gaussPoints.shape[0]):
gp = gaussPoints[igp]
dsdn = self.ELE.dshape_dnat(gp) # derivative of shape function with respect to natural coodinates
dnatdX = (local_nodes.transpose() @ dsdn).inverse() # deformation gradient refers to initial configuration
dsdX = dsdn @ dnatdX # strain = (u_node1, u_node2, u_node3) * dsdx
dudX = local_us.transpose() @ dsdX
### get the deformation gradient, F = I + dudX
self.F[ele, igp] = dudX + eye
@ti.kernel
def get_strain_smallDeformation(self, ):
"""get the strain directly according to deformation gradient
the strain here is just for visulization, not for constitutive"""
dm, elements, gaussPoints, strain = ti.static(
self.dm, self.elements, self.ELE.gaussPoints, self.strain)
eye = ti.Matrix.zero(ti.f64, dm, dm)
for i in range(eye.n):
eye[i, i] = 1.
for ele in elements:
for igp in range(gaussPoints.shape[0]):
F = self.F[ele, igp]
strain[ele, igp] = (F + F.transpose()) / 2. - eye
@ti.kernel
def get_strain_largeDeformation(self, ):
"""get the strain directly according to deformation gradient
the strain here is just for visulization, not for constitutive
Green strain for large deformation"""
dm, elements, gaussPoints, strain = ti.static(
self.dm, self.elements, self.ELE.gaussPoints, self.strain)
eye = ti.Matrix.zero(ti.f64, dm, dm)
for i in range(eye.n):
eye[i, i] = 1.
for ele in elements:
for igp in range(gaussPoints.shape[0]):
F = self.F[ele, igp]
strain[ele, igp] = (F.transpose() @ F - eye) / 2.
def get_elasEng(self, ):
"""get elatic energy (density and total energy)"""
self.get_deformation_gradient()
self.get_elasEng_kernel()
@ti.kernel
def get_elasEng_kernel(self, ):
"""first, get elatic energy density"""
for I in ti.grouped(self.elsEngDens):
self.elsEngDens[I] = self.material.elasticEnergyDensity(
self.F[I])
"""then, get total elastic energy"""
self.elsEng[None] = 0.
for I in ti.grouped(self.elsEngDens):
self.elsEng[None] += self.elsEngDens[I] * self.vol[I]
def assemble_nodal_force_GN(self, ):
"""assemble the nodal force for GN (geometric nonlinear)"""
### get all stresses at integration points by constitutive, modified latter by automatically change consititutive
self.get_deformation_gradient()
self.material.constitutiveOfLargeDeform(self.F, self.cauchy_stress, self.ddsdde)
### get dsdx and vol
self.get_dsdx_and_vol()
### assemble to nodal force
self.assemble_nodal_force_GN_kernel()
@ti.kernel
def assemble_nodal_force_GN_kernel(self, ):
dm, nodal_force, nodeEles, nodes, gaussPoints, dsdx, cauchy_stress = ti.static(
self.dm, self.nodal_force, self.nodeEles, self.nodes,
self.ELE.gaussPoints, self.dsdx, self.cauchy_stress)
### refresh the nodal force before assembling
for i in nodal_force:
nodal_force[i] = 0.
### begin to assemble
for node0 in nodes:
for iele in range(nodeEles[0].n):
if nodeEles[node0][iele] != -1:
ele = nodeEles[node0][iele]
### get the sequence of this node in the element
nid = tg.get_index_ti(self.elements[ele], node0)
if nid == -1:
print("\033[31;1m Error, index not found. nid = -1 \033[0m")
### assemble stress to the nodal force
for igp in range(gaussPoints.shape[0]):
dsdx_x_stress = dsdx[ele, igp][nid, :] @ cauchy_stress[ele, igp]
for i in range(dm):
nodal_force[node0 * dm + i] = \
nodal_force[node0 * dm + i] + dsdx_x_stress[i] * self.vol[ele, igp]
def solve(self, inp: InpInfoBase, show_newton_steps: bool=False, save2path: str=None):
"""solved by multiple time increments, each increment calls slove_inc()"""
max_inc = inp.time_incs["max_inc"]
min_inc = inp.time_incs["min_inc"]
max_time = inp.time_incs["max_time"]
self.dt = inp.time_incs["ini_inc"]
neumannBCs = copy.deepcopy(inp.neumann_bc_info)
dirichletBCs = copy.deepcopy(inp.dirichlet_bc_info)
for dirichletBC in dirichletBCs:
node_set = ti.field(ti.i32, shape=(len(dirichletBC["node_set"])))
node_set.from_numpy(np.array([*dirichletBC["node_set"]]))
dirichletBC["node_set"] = node_set # replace the original node set by field
boundary_conditions = {"neumannBCs": neumannBCs, "dirichletBCs": dirichletBCs}
### whether show the body during time step and Newton's step
if self.geometric_nonlinear:
windowLength = 512
window = ti.ui.Window('show body', (windowLength, windowLength))
else: window = None
### visualize and image IO at the initial step
if self.geometric_nonlinear:
fileName = f"{save2path}_time{self.time0:.4f}.png" if save2path else None
self.show_window(window, fileName)
if show_newton_steps:
fileName = self.write_image_name(save2path, 0, 0)
self.show_window(window, fileName)
### now start the time increments
kinc = -1 # the number of time increment
while self.time1 < max_time:
kinc += 1
self.time1 = min(self.time0 + self.dt, max_time)
print("\033[40;33;1m >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"
">>>>> kinc = {}, time0 = {}, dt = {} \033[0m".format(kinc, self.time0, self.dt))
load_ratio = self.time1 / max_time
### set the boundary according to load ratio
for id, neumannBC in enumerate(neumannBCs):
neumannBC["traction"] = inp.neumann_bc_info[id]["traction"] * load_ratio
for id, dirichletBC in enumerate(dirichletBCs):
dirichletBC["val"] = inp.dirichlet_bc_info[id]["val"] * load_ratio
### advance a time increment
converged, newton_loop = self.advance_inc(inp, boundary_conditions,
show_newton_steps, save2path, window) # update self.dof
if not converged:
self.time1 = self.time0
self.dt /= 4.
self.dof.copy_from(self.dof_old)
kinc -= 1
if self.dt < min_inc:
print("\033[31;1m allowable minimum dt is reached, "
"Newton's method not converges, solution is not found. \033[0m")
break
continue
### increast dt if fast convergence occurs in previous dt
if newton_loop <= 8:
self.dt = min(self.dt * 1.5, max_inc)
self.dof_old.copy_from(self.dof)
self.time0 = self.time1
### visualize and image IO
if self.geometric_nonlinear:
fileName = f"{save2path}_time{self.time1:.4f}.png" if save2path else None
self.show_window(window, fileName)
def advance_inc(self, inp: InpInfoBase, boundary_conditions: dict,
show_newton_steps: bool=False, save2path: str=None,
window: Union[ti.ui.Window, ti.GUI]=None,
) -> Tuple[bool, int]:
def inside_relaxation():
self.assemble_nodal_force_GN(); self.assemble_stiffnessMtrx() # use new dofs to compute nodal force
tg.c_equals_a_minus_b(self.residual_nodal_force, self.nodal_force, self.rhs)
self.dirichletBC_forNewtonMethod(boundary_conditions["dirichletBCs"])
residual = tg.field_norm(self.residual_nodal_force)
print("\033[32;1m residual = {} \033[0m".format(residual))
if show_newton_steps:
fileName = self.write_image_name(save2path, newton_loop+1, relax_loop+1)
self.show_window(window, fileName)
return residual
"""solve at each time increment"""
geometric_nonlinear = inp.geometric_nonlinear
print("\033[35;1m >>> geometric nonlinear is {}. \033[0m".format(
{False: "off", True: "on"}[geometric_nonlinear]))
print("\033[32;1m now we begin to assemble the sparse matrix \033[0m"); time0 = time.time()
self.get_dsdx_and_vol()
self.assemble_stiffnessMtrx()
print("\033[32;1m sparse matrix assembling is finished \033[0m"); time1 = time.time()
if not self.compiled:
self.compiled = True
print("\033[35;1m assemble_sparseMtrx's compiling time is {} s\033[0m".format(time1 - time0))
else:
print("time for assemble is {} s".format(time1 - time0))
### impost boundary condition at the initial state
self.impose_boundary_condition(boundary_conditions)
if geometric_nonlinear == False: # small deformation
self.solve_dof()
return True, 0
else: # large deformation, use newton method
### compute nodal force for large deformation
self.assemble_nodal_force_GN(); self.assemble_stiffnessMtrx()
tg.c_equals_a_minus_b(self.residual_nodal_force, self.nodal_force, self.rhs)
self.dirichletBC_forNewtonMethod(boundary_conditions["dirichletBCs"])
pre_residual = tg.field_norm(self.residual_nodal_force)
if not hasattr(self, "ini_residual"):
self.ini_residual = pre_residual
print("\033[40;33;1m initial residual_nodal_force = {} \033[0m".format(self.ini_residual))
if show_newton_steps:
fileName = self.write_image_name(save2path, 1, 1)
self.show_window(window, fileName)
if self.ini_residual < 1.e-9:
print("\033[32;1m good! nonlinear converge! \033[0m")
else:
newton_loop = -1
while pre_residual / (self.ini_residual + 1.e-30) >= 0.01: # not convergent
newton_loop += 1
if newton_loop >= 24:
return False, newton_loop # Newton's method has not converged
du = self.solve_dof() # dofs = dofs - K^(-1) * residual
self.assemble_nodal_force_GN(); self.assemble_stiffnessMtrx() # use new dofs to compute nodal force
### self.residual_nodal_force = self.nodal_force - self.rhs
tg.c_equals_a_minus_b(self.residual_nodal_force, self.nodal_force, self.rhs)
self.dirichletBC_forNewtonMethod(boundary_conditions["dirichletBCs"])
residual = tg.field_norm(self.residual_nodal_force)
if np.isnan(residual):
print("NaN occurs, automatically recompute with smaller time step")
return False, newton_loop
print("\033[40;33;1m newton_loop = {}, residual_nodal_force = {} \033[0m".format(newton_loop, residual))
if show_newton_steps:
fileName = self.write_image_name(save2path, newton_loop+1, 1)
self.show_window(window, fileName)
### boost Newton's method by going a larger step if residual force is declining
relax_loop = -1; relaxation = 1.
relaxation = 1. # further_step_ratio
while 0.1 * pre_residual < residual < pre_residual: # when residual declines, go on this direction further
new_residual = residual
relax_loop += 1
if relax_loop >= 10:
break
print("\033[35;1m further_step_ratio = {} \033[0m".format(relaxation))
### self.dof -= relaxation * du
tg.a_equals_b_plus_c_mul_d(self.dof, self.dof, -relaxation, du)
residual = inside_relaxation()
if residual > new_residual:
tg.a_equals_b_plus_c_mul_d(self.dof, self.dof, +relaxation, du)
residual = inside_relaxation()
relaxation *= 0.5
### relaxation for Newton's method when residual gets bigger
relax_loop = -1; relaxation = 0.5
while residual > pre_residual:
relax_loop += 1
if relax_loop >= 2:
break
print("\033[35;1m relaxation = {} \033[0m".format(relaxation))
### self.dof += (1. - relaxation) * du, i.e., recover dof, then update with relaxation
tg.a_equals_b_plus_c_mul_d(self.dof, self.dof, (1. - relaxation), du)
tg.field_multiply(du, relaxation)
residual = inside_relaxation()
pre_residual = residual
return True, newton_loop # Newton's method converges
def show_window(self, window, save2path: str=None):
self.compute_strain_stress()
self.ELE.extrapolate(self.mises_stress, self.nodal_vals)
self.body.show(window, self.dof, self.nodal_vals, save2path)
def write_image_name(self, save2path:str, newton_loop:int, relax_loop:int):
writeFrequency = 2
if not save2path:
writeImage = False
else:
if newton_loop % writeFrequency == 0 and relax_loop % writeFrequency == 0:
writeImage = True
else:
writeImage = False
if writeImage:
fileName = f"{save2path}_{self.time0:.4f}_{newton_loop}_{relax_loop}_.png"
else:
fileName = None
return fileName
if __name__ == "__main__":
ti.init(arch=ti.cuda, dynamic_index=True, default_fp=ti.f64)
fileName = input("\033[32;1m please give the .inp format's "
"input file path and name: \033[0m")
### for example, fileName = ./tests/elliptic_membrane/element_linear/ellip_membrane_linEle_localVeryFine.inp
inp = InpInfoBase(fileName)
nodes, eSets = inp.nodes, inp.eSets
body = Body(nodes=nodes, elements=list(eSets.values())[0])
ele_type = list(eSets.keys())[0]
if ele_type[0:3] == "CPS":
material = LinearIsotropicPlaneStress(modulus=inp.materials["Elastic"][0],
poisson_ratio=inp.materials["Elastic"][1])
elif ele_type[0:3] == "CPE":
material = LinearIsotropicPlaneStrain(modulus=inp.materials["Elastic"][0],
poisson_ratio=inp.materials["Elastic"][1])
equationSystem = System_of_equations(body, material, inp.geometric_nonlinear)
equationSystem.solve(inp)
print("\033[40;33;1m equationSystem.dof = \n{} \033[0m".format(equationSystem.dof.to_numpy()))
### show the body
equationSystem.compute_strain_stress()
stress = equationSystem.mises_stress.to_numpy()
print("\033[35;1m maximum mises stress = {} MPa \033[0m".format(abs(stress).max()))
print("\033[40;33;1m max dof (disp) = {} \033[0m".format(tg.field_abs_max(equationSystem.dof)))
windowLength = 512
gui = ti.GUI('show body', res=(windowLength, windowLength))
while gui.running:
equationSystem.body.show2d(gui, disp=equationSystem.dof, field=stress)