forked from bevyengine/bevy
-
Notifications
You must be signed in to change notification settings - Fork 1
/
dynamic_types.rs
249 lines (204 loc) · 9.26 KB
/
dynamic_types.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//! This example demonstrates the use of dynamic types in Bevy's reflection system.
use bevy::reflect::{
reflect_trait, serde::TypedReflectDeserializer, std_traits::ReflectDefault, DynamicArray,
DynamicEnum, DynamicList, DynamicMap, DynamicStruct, DynamicTuple, DynamicTupleStruct,
DynamicVariant, FromReflect, Reflect, ReflectFromReflect, ReflectRef, TypeRegistry, Typed,
};
use serde::de::DeserializeSeed;
use std::collections::HashMap;
fn main() {
#[derive(Reflect, Default)]
#[reflect(Identifiable, Default)]
struct Player {
id: u32,
}
#[reflect_trait]
trait Identifiable {
fn id(&self) -> u32;
}
impl Identifiable for Player {
fn id(&self) -> u32 {
self.id
}
}
// Normally, when instantiating a type, you get back exactly that type.
// This is because the type is known at compile time.
// We call this the "concrete" or "canonical" type.
let player: Player = Player { id: 123 };
// When working with reflected types, however, we often "erase" this type information
// using the `Reflect` trait object.
// The underlying type is still the same (in this case, `Player`),
// but now we've hidden that information from the compiler.
let reflected: Box<dyn Reflect> = Box::new(player);
// Because it's the same type under the hood, we can still downcast it back to the original type.
assert!(reflected.downcast_ref::<Player>().is_some());
// But now let's "clone" our type using `Reflect::clone_value`.
let cloned: Box<dyn Reflect> = reflected.clone_value();
// If we try to downcast back to `Player`, we'll get an error.
assert!(cloned.downcast_ref::<Player>().is_none());
// Why is this?
// Well the reason is that `Reflect::clone_value` actually creates a dynamic type.
// Since `Player` is a struct, we actually get a `DynamicStruct` back.
assert!(cloned.is::<DynamicStruct>());
// This dynamic type is used to represent (or "proxy") the original type,
// so that we can continue to access its fields and overall structure.
let ReflectRef::Struct(cloned_ref) = cloned.reflect_ref() else {
panic!("expected struct")
};
let id = cloned_ref.field("id").unwrap().downcast_ref::<u32>();
assert_eq!(id, Some(&123));
// It also enables us to create a representation of a type without having compile-time
// access to the actual type. This is how the reflection deserializers work.
// They generally can't know how to construct a type ahead of time,
// so they instead build and return these dynamic representations.
let input = "(id: 123)";
let mut registry = TypeRegistry::default();
registry.register::<Player>();
let registration = registry.get(std::any::TypeId::of::<Player>()).unwrap();
let deserialized = TypedReflectDeserializer::new(registration, ®istry)
.deserialize(&mut ron::Deserializer::from_str(input).unwrap())
.unwrap();
// Our deserialized output is a `DynamicStruct` that proxies/represents a `Player`.
assert!(deserialized.downcast_ref::<DynamicStruct>().is_some());
assert!(deserialized.represents::<Player>());
// And while this does allow us to access the fields and structure of the type,
// there may be instances where we need the actual type.
// For example, if we want to convert our `dyn Reflect` into a `dyn Identifiable`,
// we can't use the `DynamicStruct` proxy.
let reflect_identifiable = registration
.data::<ReflectIdentifiable>()
.expect("`ReflectIdentifiable` should be registered");
// This fails since the underlying type of `deserialized` is `DynamicStruct` and not `Player`.
assert!(reflect_identifiable
.get(deserialized.as_reflect())
.is_none());
// So how can we go from a dynamic type to a concrete type?
// There are two ways:
// 1. Using `Reflect::apply`.
{
// If you know the type at compile time, you can construct a new value and apply the dynamic
// value to it.
let mut value = Player::default();
value.apply(deserialized.as_reflect());
assert_eq!(value.id, 123);
// If you don't know the type at compile time, you need a dynamic way of constructing
// an instance of the type. One such way is to use the `ReflectDefault` type data.
let reflect_default = registration
.data::<ReflectDefault>()
.expect("`ReflectDefault` should be registered");
let mut value: Box<dyn Reflect> = reflect_default.default();
value.apply(deserialized.as_reflect());
let identifiable: &dyn Identifiable = reflect_identifiable.get(value.as_reflect()).unwrap();
assert_eq!(identifiable.id(), 123);
}
// 2. Using `FromReflect`
{
// If you know the type at compile time, you can use the `FromReflect` trait to convert the
// dynamic value into the concrete type directly.
let value: Player = Player::from_reflect(deserialized.as_reflect()).unwrap();
assert_eq!(value.id, 123);
// If you don't know the type at compile time, you can use the `ReflectFromReflect` type data
// to perform the conversion dynamically.
let reflect_from_reflect = registration
.data::<ReflectFromReflect>()
.expect("`ReflectFromReflect` should be registered");
let value: Box<dyn Reflect> = reflect_from_reflect
.from_reflect(deserialized.as_reflect())
.unwrap();
let identifiable: &dyn Identifiable = reflect_identifiable.get(value.as_reflect()).unwrap();
assert_eq!(identifiable.id(), 123);
}
// Lastly, while dynamic types are commonly generated via reflection methods like
// `Reflect::clone_value` or via the reflection deserializers,
// you can also construct them manually.
let mut my_dynamic_list = DynamicList::from_iter([1u32, 2u32, 3u32]);
// This is useful when you just need to apply some subset of changes to a type.
let mut my_list: Vec<u32> = Vec::new();
my_list.apply(&my_dynamic_list);
assert_eq!(my_list, vec![1, 2, 3]);
// And if you want it to actually proxy a type, you can configure it to do that as well:
assert!(!my_dynamic_list.as_reflect().represents::<Vec<u32>>());
my_dynamic_list.set_represented_type(Some(<Vec<u32>>::type_info()));
assert!(my_dynamic_list.as_reflect().represents::<Vec<u32>>());
// ============================= REFERENCE ============================= //
// For reference, here are all the available dynamic types:
// 1. `DynamicTuple`
{
let mut dynamic_tuple = DynamicTuple::default();
dynamic_tuple.insert(1u32);
dynamic_tuple.insert(2u32);
dynamic_tuple.insert(3u32);
let mut my_tuple: (u32, u32, u32) = (0, 0, 0);
my_tuple.apply(&dynamic_tuple);
assert_eq!(my_tuple, (1, 2, 3));
}
// 2. `DynamicArray`
{
let dynamic_array = DynamicArray::from_iter([1u32, 2u32, 3u32]);
let mut my_array = [0u32; 3];
my_array.apply(&dynamic_array);
assert_eq!(my_array, [1, 2, 3]);
}
// 3. `DynamicList`
{
let dynamic_list = DynamicList::from_iter([1u32, 2u32, 3u32]);
let mut my_list: Vec<u32> = Vec::new();
my_list.apply(&dynamic_list);
assert_eq!(my_list, vec![1, 2, 3]);
}
// 4. `DynamicMap`
{
let dynamic_map = DynamicMap::from_iter([("x", 1u32), ("y", 2u32), ("z", 3u32)]);
let mut my_map: HashMap<&str, u32> = HashMap::new();
my_map.apply(&dynamic_map);
assert_eq!(my_map.get("x"), Some(&1));
assert_eq!(my_map.get("y"), Some(&2));
assert_eq!(my_map.get("z"), Some(&3));
}
// 5. `DynamicStruct`
{
#[derive(Reflect, Default, Debug, PartialEq)]
struct MyStruct {
x: u32,
y: u32,
z: u32,
}
let mut dynamic_struct = DynamicStruct::default();
dynamic_struct.insert("x", 1u32);
dynamic_struct.insert("y", 2u32);
dynamic_struct.insert("z", 3u32);
let mut my_struct = MyStruct::default();
my_struct.apply(&dynamic_struct);
assert_eq!(my_struct, MyStruct { x: 1, y: 2, z: 3 });
}
// 6. `DynamicTupleStruct`
{
#[derive(Reflect, Default, Debug, PartialEq)]
struct MyTupleStruct(u32, u32, u32);
let mut dynamic_tuple_struct = DynamicTupleStruct::default();
dynamic_tuple_struct.insert(1u32);
dynamic_tuple_struct.insert(2u32);
dynamic_tuple_struct.insert(3u32);
let mut my_tuple_struct = MyTupleStruct::default();
my_tuple_struct.apply(&dynamic_tuple_struct);
assert_eq!(my_tuple_struct, MyTupleStruct(1, 2, 3));
}
// 7. `DynamicEnum`
{
#[derive(Reflect, Default, Debug, PartialEq)]
enum MyEnum {
#[default]
Empty,
Xyz(u32, u32, u32),
}
let mut values = DynamicTuple::default();
values.insert(1u32);
values.insert(2u32);
values.insert(3u32);
let dynamic_variant = DynamicVariant::Tuple(values);
let dynamic_enum = DynamicEnum::new("Xyz", dynamic_variant);
let mut my_enum = MyEnum::default();
my_enum.apply(&dynamic_enum);
assert_eq!(my_enum, MyEnum::Xyz(1, 2, 3));
}
}