-
Notifications
You must be signed in to change notification settings - Fork 34
/
predict.py
201 lines (156 loc) · 7.51 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import logging
import argparse
from tqdm import tqdm, trange
import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader, SequentialSampler
from transformers import AutoModelForTokenClassification
from utils import init_logger, load_tokenizer, get_labels
logger = logging.getLogger(__name__)
def get_device(pred_config):
return "cuda" if torch.cuda.is_available() and not pred_config.no_cuda else "cpu"
def get_args(pred_config):
return torch.load(os.path.join(pred_config.model_dir, 'training_args.bin'))
def load_model(pred_config, args, device):
# Check whether model exists
if not os.path.exists(pred_config.model_dir):
raise Exception("Model doesn't exists! Train first!")
try:
model = AutoModelForTokenClassification.from_pretrained(args.model_dir) # Config will be automatically loaded from model_dir
model.to(device)
model.eval()
logger.info("***** Model Loaded *****")
except:
raise Exception("Some model files might be missing...")
return model
def read_input_file(pred_config):
lines = []
with open(pred_config.input_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
words = line.split()
lines.append(words)
return lines
def convert_input_file_to_tensor_dataset(lines,
pred_config,
args,
tokenizer,
pad_token_label_id,
cls_token_segment_id=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
mask_padding_with_zero=True):
# Setting based on the current model type
cls_token = tokenizer.cls_token
sep_token = tokenizer.sep_token
unk_token = tokenizer.unk_token
pad_token_id = tokenizer.pad_token_id
all_input_ids = []
all_attention_mask = []
all_token_type_ids = []
all_slot_label_mask = []
for words in lines:
tokens = []
slot_label_mask = []
for word in words:
word_tokens = tokenizer.tokenize(word)
if not word_tokens:
word_tokens = [unk_token] # For handling the bad-encoded word
tokens.extend(word_tokens)
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
slot_label_mask.extend([0] + [pad_token_label_id] * (len(word_tokens) - 1))
# Account for [CLS] and [SEP]
special_tokens_count = 2
if len(tokens) > args.max_seq_len - special_tokens_count:
tokens = tokens[: (args.max_seq_len - special_tokens_count)]
slot_label_mask = slot_label_mask[:(args.max_seq_len - special_tokens_count)]
# Add [SEP] token
tokens += [sep_token]
token_type_ids = [sequence_a_segment_id] * len(tokens)
slot_label_mask += [pad_token_label_id]
# Add [CLS] token
tokens = [cls_token] + tokens
token_type_ids = [cls_token_segment_id] + token_type_ids
slot_label_mask = [pad_token_label_id] + slot_label_mask
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = args.max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token_id] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
slot_label_mask = slot_label_mask + ([pad_token_label_id] * padding_length)
all_input_ids.append(input_ids)
all_attention_mask.append(attention_mask)
all_token_type_ids.append(token_type_ids)
all_slot_label_mask.append(slot_label_mask)
# Change to Tensor
all_input_ids = torch.tensor(all_input_ids, dtype=torch.long)
all_attention_mask = torch.tensor(all_attention_mask, dtype=torch.long)
all_token_type_ids = torch.tensor(all_token_type_ids, dtype=torch.long)
all_slot_label_mask = torch.tensor(all_slot_label_mask, dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_slot_label_mask)
return dataset
def predict(pred_config):
# load model and args
args = get_args(pred_config)
device = get_device(pred_config)
model = load_model(pred_config, args, device)
label_lst = get_labels(args)
logger.info(args)
# Convert input file to TensorDataset
pad_token_label_id = torch.nn.CrossEntropyLoss().ignore_index
tokenizer = load_tokenizer(args)
lines = read_input_file(pred_config)
dataset = convert_input_file_to_tensor_dataset(lines, pred_config, args, tokenizer, pad_token_label_id)
# Predict
sampler = SequentialSampler(dataset)
data_loader = DataLoader(dataset, sampler=sampler, batch_size=pred_config.batch_size)
all_slot_label_mask = None
preds = None
for batch in tqdm(data_loader, desc="Predicting"):
batch = tuple(t.to(device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"labels": None}
if args.model_type != "distilkobert":
inputs["token_type_ids"] = batch[2]
outputs = model(**inputs)
logits = outputs[0]
if preds is None:
preds = logits.detach().cpu().numpy()
all_slot_label_mask = batch[3].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
all_slot_label_mask = np.append(all_slot_label_mask, batch[3].detach().cpu().numpy(), axis=0)
preds = np.argmax(preds, axis=2)
slot_label_map = {i: label for i, label in enumerate(label_lst)}
preds_list = [[] for _ in range(preds.shape[0])]
for i in range(preds.shape[0]):
for j in range(preds.shape[1]):
if all_slot_label_mask[i, j] != pad_token_label_id:
preds_list[i].append(slot_label_map[preds[i][j]])
# Write to output file
with open(pred_config.output_file, "w", encoding="utf-8") as f:
for words, preds in zip(lines, preds_list):
line = ""
for word, pred in zip(words, preds):
if pred == 'O':
line = line + word + " "
else:
line = line + "[{}:{}] ".format(word, pred)
f.write("{}\n".format(line.strip()))
logger.info("Prediction Done!")
if __name__ == "__main__":
init_logger()
parser = argparse.ArgumentParser()
parser.add_argument("--input_file", default="sample_pred_in.txt", type=str, help="Input file for prediction")
parser.add_argument("--output_file", default="sample_pred_out.txt", type=str, help="Output file for prediction")
parser.add_argument("--model_dir", default="./model", type=str, help="Path to save, load model")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size for prediction")
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
pred_config = parser.parse_args()
predict(pred_config)