-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
63 lines (44 loc) · 1.63 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# psifrr <img src="man/figures/logo.png" width="150px" align="right" />
<!-- badges: start -->
<!-- badges: end -->
Analysis and visualization of free recall data.
psifrr relies on the [Psifr](https://psifr.readthedocs.io/en/stable/index.html) Python package, which is called from R using the `reticulate` package.
## Installation
First, install `remotes`:
``` r
install.packages("remotes")
```
Next, install psifrr with:
``` r
remotes::install_github("mortonne/psifrr")
```
## Quickstart
To calculate a serial position curve for each participant in a sample dataset:
```{r}
library(psifrr)
raw <- sample_data("Morton2013")
data <- merge_free_recall(raw)
recall <- spc(data)
```
See the [psifrr website](https://mortonne.github.io/psifrr/index.html) for full
documentation and a list of available analyses.
## Importing data
Generally the best way to get your data into shape for analysis in psifrr is to create a CSV (or TSV) file with one row for each event in the experiment, including study events (i.e., item presentations) and all recall attempts (including repeats and intrusions).
See [importing data](https://psifr.readthedocs.io/en/latest/guide/import.html) for details.
## Citation
If you use psifrr, please cite the Psifr paper:
Morton, N. W., (2020).
Psifr: Analysis and visualization of free recall data.
Journal of Open Source Software, 5(54), 2669, https://doi.org/10.21105/joss.02669