forked from adrianalbert/urban-environments
-
Notifications
You must be signed in to change notification settings - Fork 1
/
urbanatlas.py
295 lines (246 loc) · 10.5 KB
/
urbanatlas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# numeric packages
import numpy as np
import pandas as pd
# filesystem and OS
import sys, os, time
import glob
# plotting
from matplotlib import pyplot as plt
import matplotlib
# compression
import gzip
import cPickle as pickle
import copy
# geo stuff
import geopandas as gpd
from shapely.geometry import Point, Polygon
import pysatml
from pysatml.utils import gis_utils as gu
from pysatml.utils import vector_utils as vu
from pysatml import satimage as satimg
N_SAMPLES_PER_CITY = 25000
N_SAMPLES_PER_CLASS = 1250
MAX_SAMPLES_PER_POLY= 50
class UAShapeFile():
'''
Class that encapsulates functionality for analyzing GIS vector data from the Urban Atlas dataset, published as shapefiles. The Urban Atlas is a land use dataset of 300 cities in Europe.
'''
def __init__(self, shapefile, prjfile=None, class_col='ITEM', consolidate_classes=False, **kwargs):
'''
Initialize a GeoPandas GeoDataFrame with settings specific to the published Urban Atlas shape files.
'''
self._shapefile = shapefile
self._class_col = class_col
for k,v in kwargs.iteritems():
setattr(self, "_%s"%k, v)
# read in shape file
self._gdf = load_shapefile(self._shapefile)
if self._gdf is None:
return
if consolidate_classes:
self._gdf = consolidate_UA_classes(self._gdf, self._class_col)
self._classes = self._gdf[self._class_col].unique()
print "%d polygons | %d land use classes" % (len(self._gdf), len(self._classes))
# read in projection file associated with shapefile, if available
self._prjfile = shapefile.replace(".shp", ".prj") if prjfile is None else prjfile
try:
self._prj = gu.read_prj_file(self._prjfile)
except:
print "Error: cannot find projection file %s" % self._prjfile
self._prj = ""
self.compute_bounds()
def compute_bounds(self):
# compute bounds for current shapefile for easier access later
lonmin, latmin, lonmax, latmax = vu.compute_gdf_bounds(self._gdf)
self._bounds = (lonmin, latmin, lonmax, latmax)
xmin, ymin = gu.lonlat2xy((lonmin, latmin), prj=self._prj)
xmax, ymax = gu.lonlat2xy((lonmax, latmax), prj=self._prj)
self._bounds_meters = (xmin, ymin, xmax, ymax)
def compute_spatial_extent(self):
xmin, ymin, xmax, ymax = self._bounds_meters
L = np.sqrt((xmax-xmin)**2 + (ymax-ymin)**2) / 1.0e3 / np.sqrt(2)
return L
def compute_classified_area(self):
xmin, ymin, xmax, ymax = self._bounds_meters
box_area = (xmax-xmin) / 1.0e3 * (ymax-ymin) / 1.0e3
classified_area = self._gdf\
.groupby(self._class_col)\
.apply(lambda x: x['SHAPE_AREA'].sum())
frac_classified = classified_area/box_area
return frac_classified
def filter_by_polygon(self, poly):
return vu.filter_gdf_by_polygon(self._gdf, poly)
def crop_centered_window(self, center, window):
'''
Returns a UAShapeFile object obtained from original one by cropping a window of (W, H) (in kilometers) around a center (lon, lat).
'''
new_self = copy.deepcopy(self)
new_self._gdf = vu.filter_gdf_by_centered_window(new_self._gdf, center, window)
new_self.compute_bounds()
return new_self
def extract_class_raster(self,center=None,window=None,grid_size=(100,100)):
if center is None:
lonmin, latmin, lonmax, latmax = self._bounds
center = ((latmin+latmax)/2.0, (lonmin+lonmax)/2.0)
if window is not None:
bbox = gu.bounding_box_at_location(center, window)
else:
bbox = self._bounds
return construct_class_raster(self._gdf, bbox, class_col=self._class_col, grid_size=grid_size)
def generate_sampling_locations(self, n_samples_per_class=N_SAMPLES_PER_CLASS,thresh_area=0.25,max_samples=MAX_SAMPLES_PER_POLY):
gdf_sel = self._gdf[self._gdf.SHAPE_AREA>=thresh_area]
return generate_sampling_locations(gdf_sel, n_samples_per_class=n_samples_per_class, class_col=self._class_col, max_samples=max_samples)
def consolidate_UA_classes(gdf, class_col='ITEM'):
consolidate_classes = {
"Continuous Urban Fabric (S.L. > 80%)":"High Density Urban Fabric",
"Discontinuous Dense Urban Fabric (S.L. : 50% - 80%)":"High Density Urban Fabric",
"Discontinuous Medium Density Urban Fabric (S.L. : 30% - 50%)":"Medium Density Urban Fabric",
"Discontinuous Low Density Urban Fabric (S.L. : 10% - 30%)":"Low Density Urban Fabric",
"Discontinuous Very Low Density Urban Fabric (S.L. < 10%)":"Low Density Urban Fabric"
}
gdf[class_col] = gdf[class_col].apply(
lambda x: consolidate_classes[x] if x in consolidate_classes else x)
include_classes = ["Green urban areas",
"Airports",
"Forests",
"Agricultural + Semi-natural areas + Wetlands",
# "Railways and associated land",
"High Density Urban Fabric",
#"Mineral extraction and dump sites",
"Medium Density Urban Fabric",
"Low Density Urban Fabric",
"Water bodies",
"Sports and leisure facilities",
"Industrial, commercial, public, military and private units"]
gdf = gdf[gdf[class_col].isin(include_classes)]
return gdf
def load_shapefile(shapefile, class_col="ITEM"):
# read in shapefile
try:
gdf = gpd.GeoDataFrame.from_file(shapefile)
except:
print "--> %s: error reading file!"%shapefile
return None
gdf.columns = [c.upper() if c != "geometry" else c for c in gdf.columns]
if 'SHAPE_AREA' not in gdf.columns:
gdf['SHAPE_AREA'] = gdf['geometry'].apply(lambda p: p.area)
if 'SHAPE_LEN' not in gdf.columns:
gdf['SHAPE_LEN'] = gdf['geometry'].apply(lambda p: p.length)
# convert area & length to km
gdf['SHAPE_AREA'] = gdf['SHAPE_AREA'] / 1.0e6 # convert to km^2
gdf['SHAPE_LEN'] = gdf['SHAPE_LEN'] / 1.0e3 # convert to km
# change coordinate system from northing/easting to lonlat
targetcrs = {u'ellps': u'WGS84', u'datum': u'WGS84', u'proj': u'longlat'}
gdf.to_crs(crs=targetcrs, inplace=True)
return gdf
def construct_class_raster(gdf, bbox, class_col="ITEM", label2class=None, grid_size=(100,100)):
grid_size_lon, grid_size_lat = grid_size
lonmin_grid, latmin_grid, lonmax_grid, latmax_grid = bbox
latv = np.linspace(latmin_grid, latmax_grid, grid_size_lat+1)
lonv = np.linspace(lonmin_grid, lonmax_grid, grid_size_lon+1)
classes = gdf[class_col].unique()
label2class = dict(zip(range(len(classes)), classes)) if label2class is None else label2class
raster = np.zeros((grid_size_lon, grid_size_lat, len(classes)))
locations = []
for i in range(len(lonv)-1):
for j in range(len(latv)-1):
cell_poly = Polygon([(lonv[i],latv[j]), (lonv[i+1],latv[j]), \
(lonv[i+1],latv[j+1]), (lonv[i],latv[j+1])])
gdf_frame = vu.filter_gdf_by_polygon(gdf, cell_poly)
if len(gdf_frame) == 0:
continue
areas_per_class = gdf_frame.groupby(class_col)\
.apply(lambda x: x.intersection(cell_poly)\
.apply(lambda y:y.area*(6400**2)).sum())
classified_area = areas_per_class.sum()
if classified_area > 0:
areas_per_class = areas_per_class / float(classified_area)
raster[i,j,:] = [areas_per_class[label2class[k]] if label2class[k] in areas_per_class else 0 for k in range(len(classes))]
# also save sampling locations
# only if we can get ground truth label for the cell
cell_class = areas_per_class.argmax()
loc = (i, j,
cell_poly.centroid.xy[0][0],
cell_poly.centroid.xy[1][0],
cell_class)
locations.append(loc)
locations = pd.DataFrame(locations, \
columns=["grid-i", "grid-j", "lon", "lat", "class"])
return raster, locations, classes
def generate_sampling_locations(gdf_sel, n_samples_per_class=N_SAMPLES_PER_CLASS,class_col="ITEM", max_samples=MAX_SAMPLES_PER_POLY):
# select polygons to sample
select_polygons = gdf_sel.groupby(class_col)\
.apply(lambda x: sample_polygons(x,
n_samples=n_samples_per_class,
max_samples=max_samples))
if class_col not in select_polygons.columns:
select_polygons.reset_index(inplace=True)
# make sure all polygons are ok
# some polygons have their geometries messed up in the previous step??
select_polygons['geometry'] = select_polygons['geometry'].apply(lambda p: p.buffer(0) if not p.is_valid else p)
# sample locations from each polygon
locations = select_polygons.groupby(class_col)\
.apply(lambda x: sample_locations_from_polygon(x,
sample_on_boundary = 'road' in x[class_col].iloc[0].lower() or 'railway' in x[class_col].iloc[0].lower()))
return locations
def sample_polygons(df, n_samples=1000, max_samples=None):
'''
A stratified sampling of polygons in the DataFrame gdf.
'''
samples_per_poly = (df.SHAPE_AREA/float(df.SHAPE_AREA.min()))\
.astype(int)
# print df.ITEM.iloc[0]
if samples_per_poly.sum() > n_samples:
pvec = np.array([0.0, 0.2, 0.5, 0.7, 0.9, 0.95, 1])
bins = np.percentile(samples_per_poly, pvec*100)
cnts, _ = np.histogram(samples_per_poly, bins)
ret = []
x = samples_per_poly
for i in range(len(bins)-1):
if cnts[i] == 0:
continue
y = x[(x>=bins[i]) & (x<bins[i+1])] if i<len(bins)-2 \
else x[(x>=bins[i]) & (x<=bins[i+1])]
# print i, (bins[i], bins[i+1]), cnts[i], pvec[i+1], len(x[(x>=bins[i]) & (x<=bins[i+1])])
y = y.sample(frac=pvec[i+1])
ret.append(y)
ret = pd.concat(ret)
ret_scaled = (ret.astype(float) / ret.sum() * n_samples)\
.apply(np.ceil).astype(int)
ret_df = df.ix[ret_scaled.index]
ret_df['samples'] = ret_scaled.values
else:
ret_df = df
ret_df['samples'] = samples_per_poly.values
# clamp # samples per polygon if specified
if max_samples is not None:
ret_df['samples'] = ret_df['samples'].apply(\
lambda x: min([x, max_samples]))
ret_df['samples'] = ret_df['samples'].astype(int)
return ret_df
def sample_locations_from_polygon(df, sample_on_boundary=False):
'''
Given a list of polygons of the same type, generate locations for sampling images
'''
polygons = df['geometry']
nsamples = df['samples']
if not sample_on_boundary:
centroids = np.array([(p.centroid.coords.xy[0][0], p.centroid.coords.xy[1][0]) \
for p in polygons])
idx = nsamples > 1
if idx.sum()>0:
polygons = polygons[idx]
nsamples = nsamples[idx]
locs = [satimg.generate_locations_within_polygon(p, nSamples=m-1, strict=True) \
for p,m in zip(polygons, nsamples)]
locs = np.vstack(locs).squeeze()
locs = np.vstack([locs, centroids])
else:
locs = centroids
else:
boundaries= [zip(p.exterior.coords.xy[0], p.exterior.coords.xy[1]) \
for p in polygons]
locs = np.array([b[l] for b,m in zip(boundaries,nsamples) \
for l in np.random.choice(np.arange(0,len(b)), min([len(b),m]))])
ret = pd.DataFrame(locs, columns=["lon", "lat"])
return ret