-
Notifications
You must be signed in to change notification settings - Fork 68
/
run_checkpoint.py
executable file
·140 lines (112 loc) · 4.21 KB
/
run_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python
"""
Run a trained checkpoint to see what the agent is actually doing in the
environment.
"""
import argparse
import os.path as osp
import time
from collections import deque
import cloudpickle
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from matplotlib.ticker import FormatStrFormatter
from utils import make_env
def main():
args = parse_args()
env = make_env(args.env)
model = get_model(args.policy_ckpt_dir)
if args.reward_predictor_ckpt_dir:
reward_predictor = get_reward_predictor(args.reward_predictor_ckpt_dir)
else:
reward_predictor = None
run_agent(env, model, reward_predictor, args.frame_interval_ms)
def run_agent(env, model, reward_predictor, frame_interval_ms):
nenvs = 1
nstack = int(model.step_model.X.shape[-1])
nh, nw, nc = env.observation_space.shape
obs = np.zeros((nenvs, nh, nw, nc * nstack), dtype=np.uint8)
model_nenvs = int(model.step_model.X.shape[0])
states = model.initial_state
if reward_predictor:
value_graph = ValueGraph()
while True:
raw_obs = env.reset()
update_obs(obs, raw_obs, nc)
episode_reward = 0
done = False
while not done:
model_obs = np.vstack([obs] * model_nenvs)
actions, _, states = model.step(model_obs, states, [done])
action = actions[0]
raw_obs, reward, done, _ = env.step(action)
obs = update_obs(obs, raw_obs, nc)
episode_reward += reward
env.render()
if reward_predictor is not None:
predicted_reward = reward_predictor.reward(obs)
# reward_predictor.reward returns reward for each frame in the
# supplied batch. We only supplied one frame, so get the reward
# for that frame.
value_graph.append(predicted_reward[0])
time.sleep(frame_interval_ms * 1e-3)
print("Episode reward:", episode_reward)
def update_obs(obs, raw_obs, nc):
obs = np.roll(obs, shift=-nc, axis=3)
obs[:, :, :, -nc:] = raw_obs
return obs
def get_reward_predictor(ckpt_dir):
with open(osp.join(ckpt_dir, 'make_reward_predictor.pkl'), 'rb') as fh:
make_reward_predictor = cloudpickle.loads(fh.read())
cluster_dict = {'a2c': ['localhost:2200']}
print("Initialising reward predictor...")
reward_predictor = make_reward_predictor(name='a2c', cluster_dict=cluster_dict)
reward_predictor.init_network(ckpt_dir)
return reward_predictor
def get_model(ckpt_dir):
model_file = osp.join(ckpt_dir, 'make_model.pkl')
with open(model_file, 'rb') as fh:
make_model = cloudpickle.loads(fh.read())
print("Initialising policy...")
model = make_model()
ckpt_file = tf.train.latest_checkpoint(ckpt_dir)
print("Loading checkpoint...")
model.load(ckpt_file)
return model
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("env")
parser.add_argument("policy_ckpt_dir")
parser.add_argument("--reward_predictor_ckpt_dir")
parser.add_argument("--frame_interval_ms", type=float, default=0.)
args = parser.parse_args()
return args
class ValueGraph:
def __init__(self):
n_values = 100
self.data = deque(maxlen=n_values)
self.fig, self.ax = plt.subplots()
self.ax.yaxis.set_major_formatter(FormatStrFormatter('%.2f'))
self.fig.set_size_inches(4, 2)
self.ax.set_xlim([0, n_values - 1])
self.ax.grid(axis='y') # Draw a line at 0 reward
self.y_min = float('inf')
self.y_max = -float('inf')
self.line, = self.ax.plot([], [])
self.fig.show()
self.fig.canvas.draw()
def append(self, value):
self.data.append(value)
self.y_min = min(self.y_min, min(self.data))
self.y_max = max(self.y_max, max(self.data))
self.ax.set_ylim([self.y_min, self.y_max])
self.ax.set_yticks([self.y_min, 0, self.y_max])
plt.tight_layout()
ydata = list(self.data)
xdata = list(range(len(self.data)))
self.line.set_data(xdata, ydata)
self.ax.draw_artist(self.line)
self.fig.canvas.draw()
if __name__ == '__main__':
main()