A step-by-step training tutorial for STL10 datast is as follows.
python tools/train_moco.py
python tools/pre_compute_embedding.py
python tools/train_self_v2.py
python tools/local_consistency.py
python ./tools/train_semi.py --unlabeled 1 --num_classes 10 --num_workers 4 --dist-url tcp://localhost:10001 --label_file ./results/stl10/eval/labels_reliable_0.983136_6760.npy --save_dir ./results/stl10/spice_semi --save_name 098_6760 --batch_size 64 --net WideResNet_stl10 --data_dir ./datasets/stl10 --dataset stl10
Note that --label_file
and --save_name
should be changed according to your generated reliable label file.
TODO: More training descriptions on other datasets will be added, and some training steps will be merged.