-
Notifications
You must be signed in to change notification settings - Fork 62
/
model.conf
101 lines (84 loc) · 1.31 KB
/
model.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
###datafile参数以demo.sh传参实现
[LogReg]
#model支持梯度下降和随机梯度下降gradAscent,stoGradAscent
model:gradAscent
#学习率
alpha:0.002
#迭代次数
iter:1000
datafile:logReg.txt
[LineReg]
#model支持线性回归,岭回归,局部加权线性回归
model:regression
#岭回归lamd
lamd:0.01
#局部加权线下回归参数k
k:100
datafile:lineReg.txt
[SoftMaxReg]
#model支持梯度下降和随机梯度下降gradAscent,stoGradAscent
model:gradAscent
alpha:0.003
iter:1000
datafile:logReg.txt
[DNN]
initialization:he
learn_rateing:0.1
iter:1000
lambd:0.1
keep_prob:0.5
print_cost:true
optimizer:gd
mini_batch_size:64
beta1:0.9
beta2:0.999
epsilon:0.00000001
datafile:logReg.txt
[SVM]
#惩罚因子
C:0.6
#软间隔
soft:0.001
#bias
b:0
#迭代次数
iter:100
datafile:logReg.txt
[Adaboost]
#弱分类器个数
numIt:10
datafile:adaboost.txt
[DTree]
#model支持ID3,C4.5,CART分类树
model:ID3
datafile:id3.txt
#CART回归树
[CART]
datafile:cart.txt
[RF]
#弱分类器数
numIt:50
#弱分类树的深度
deep:5
#最小分裂err
epsilon:0.01
datafile:rf.txt
[KMeans]
K:3
datafile:kmeans.txt
[KNN]
K:10
datafile:knn.txt
[Bayes]
datafile:bayes.txt
[GMM]
K:20
iter:10
[HMM]
datafile:Ntest.txt
[HMM_CWS]
datafile:pku_training.txt
[MEMM_CWS]
datafile:pku_training.txt
[CRF_CWS]
datafile:pku_training.txt