-
Notifications
You must be signed in to change notification settings - Fork 0
/
akwaboah-2021-corrected.mmt
726 lines (686 loc) · 18 KB
/
akwaboah-2021-corrected.mmt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
[[model]]
name: akwaboah-2021-corrected
version: 20240904
mmt_authors: Michael Clerx
display_name: Akwaboah et al., 2021
desc: """
Model of the hiPSC AP by Akwaboah et al [1], with corrections.
This model adapts the calcium handling from Kurata et al. [3], and uses
current formulation from various other models, most prominently
Courtemanche et al. [4]. Five currents (INa, Ito, IKr, ICaL, and If) were
partially refit to steady-state IV curves measured in a single lab. The
conductances were adjusted by hand.
This Myokit model is based on a mixture of the Python and C implementations
supplied by the authors on Github [2]. In addition, it corrects the
equations for If, INaK's sigma, and the updates for the calcium
concentrations. For an implementation that can match the C and Python
versions as published, see the akwaboah-2021-original model.
References:
[1] Akwaboah, A. D., Tsevi, B., Yamlome, P., Treat, J. A., Brucal-Hallare,
M., Cordeiro, J. M. & Deo, M. (2021) An in silico hiPSC-derived
cardiomyocyte model built with genetic algorithm.
https://doi.org/10.3389/fphys.2021.675867
[2] Github repository for [1]. Accessed on 2024-03-22, at commit
3d0807fdde0c2d52f1e5fef7f8e5ef70b2b087d5
https://github.com/Adakwaboah/hiPSC-CM_Computational_Model
[3] Kurata, Y., Hisatome, I., Imanishi, S. & Shibamoto, T. (2002) Dynamical
description of sinoatrial node pacemaking; improved mathematical model
for primary pacemaker cell.
https://doi.org/10.1152/ajpheart.00900.2001
[4] Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998) Ionic mechanisms
underlying human atrial action potential properties: insights from a
mathematical model. American Journal of Physiology - Heart and
Circulatory Physiology, 275, H301-H321.
https://doi.org/10.1152/ajpheart.1998.275.1.H301
"""
membrane.V = -66.643468720486
ina.m = 0.049124825877
ina.h = 0.727700325891
ina.j = 0.894208866121
sodium.Na_i = 9.680699292047
potassium.K_i = 91.709001163473
ito.xf = 0.005930308293
ito.yf = 0.981076047295
ito.xs = 0.005925315068
ito.ys = 0.257724187021
ikr.fa = 0.005855419715
ikr.sa = 0.036098779153
ikr.i = 0.868561127740
if.y = 0.065137562713
ical.d = 0.000033876121
ical.f = 0.997882750596
ical.fca = 0.547948046949
cabuf.tc = 0.043582776022
cabuf.tmc = 0.449383699221
cabuf.tmm = 0.486436847737
cabuf.cmi = 0.087712453951
cabuf.cms = 0.108049141579
cabuf.cq = 0.028782461964
calcium.Ca_i = 0.000228812553
calcium.Ca_sub = 0.000288302762
calcium.Ca_up = 0.825695731160
calcium.Ca_rel = 0.024701468338
iks.x = 0.048136026971
ikur.a = 0.021931284659
ikur.i = 0.969241564523
# Simulation inputs
[engine]
time = 0 [ms]
in [ms]
bind time
pace = 0
bind pace
# Membrane potential
[membrane]
dot(V) = -(i_ion + stimulus.i_stim)
in [mV]
i_ion = (
+ ina.INa
+ ik1.IK1
+ ikr.IKr
+ iks.IKs
+ ikur.IKur
+ ikach.IKAch
+ ito.Ito
+ if.If
+ ical.ICaL
+ ipca.IpCa
+ inak.INaK
+ inaca.INaCa
+ ibna.IbNa
+ ibca.IbCa
)
in [A/F]
#
# Stimulus current
#
[stimulus]
i_stim = amplitude * engine.pace
in [A/F]
amplitude = -50 [A/F]
in [A/F]
#
# Fast sodium current
#
# Based on Luo & Rudy 1991, but partially refit to hipsc data
#
[ina]
use membrane.V
p01 = 1.01872382e1 [mS/uF] in [mS/uF]
p02 = 2.81165049e-1 [1/ms/mV] in [1/ms/mV]
p03 = 4.11026646e-2 [1/ms] in [1/ms]
p04 = 1.85913230e-1 [1/ms] in [1/ms]
p05 = 2.33559087 [1/ms] in [1/ms]
p06 = 2.69343146e5 [1/ms] in [1/ms]
p07 = 9.44262616e4 [1/ms/mV] in [1/ms/mV]
p08 = 1.95789481e-1 [1/mV] in [1/mV]
p09 = 4.34129546e-5 [1/ms/mV] in [1/ms/mV]
p10 = 5.95815316e-2 [1/mV] in [1/mV]
p11 = 4.29535950e-1 [1/mV] in [1/mV]
p12 = 1.26055107e-1 [1/ms] in [1/ms]
p13 = 5.45387213e-3 [1/mV] in [1/mV]
p14 = 1.11372808e-1 [ms] in [ms]
p15 = 8.23823189e-1 [mV] in [mV]
p16 = 7.98343615 [mV] in [mV]
p17 = 4.37170307e-1 [1/ms] in [1/ms]
p18 = 2.87045755e-7 [1/mV] in [1/mV]
p19 = 2.42211297e-2 [1/mV] in [1/mV]
p20 = 5.22647290e1 [mV] in [mV]
dot(m) = (inf - m) / tau
a = p02 * (V + 47.13 [mV]) / (1 - exp(-0.1 [1/mV] * (V + 47.13 [mV])))
in [1/ms]
b = p03 * exp(-V / 11 [mV])
in [1/ms]
tau = 1 / (a + b)
in [ms]
inf = a * tau
dot(h) = (inf - h) / tau
a = if(V < -40 [mV], p04 * exp((80 [mV] + V) / -6.8 [mV]), 0 [1/ms])
in [1/ms]
b = if(V < -40 [mV],
p05 * exp(0.079 [1/mV] * V) + p06 * exp(0.35 [1/mV] * V),
1 / (p14 * (1 + exp((V + p15) / -p16))))
in [1/ms]
tau = 1 / (a + b)
in [ms]
inf = a * tau
dot(j) = (inf - j) / tau
a = if(V < -40 [mV],
(-p07 * exp(p08 * V) - p09 * exp(-p10 * V)) * (V + 37.78 [mV]) / (1 + exp(p11 * (V + 79.23 [mV]))),
0 [1/ms])
in [1/ms]
b = if(V < -40 [mV],
(p12 * exp(-p13 * V)) / (1 + exp(-0.1378 [1/mV] * (V + 40.14 [mV]))),
(p17 * exp(-p18 * V)) / (1 + exp(-p19 * (V + p20))))
in [1/ms]
tau = 1 / (a + b)
in [ms]
inf = a * tau
K_INa = 1
desc: Manual scaling factor
INa = K_INa * p01 * m^3 * h * j * (V - rev.ENa)
in [A/F]
#
# Ito
#
# Based on Grandi-Pandit 2010, but partially refit to hipsc data
#
[ito]
use membrane.V
p01 = 1.07795129e-3 [mS/uF] in [mS/uF]
p02 = 1.55692740e-1 [mS/uF] in [mS/uF]
p03 = 1.46825076e1 [mV] in [mV]
p04 = 1.59100592e1 [mV] in [mV]
p05 = 3.83118368 [ms] in [ms]
p06 = 4.80328534e1 [mV] in [mV]
p07 = 4.89599981e1 [mV] in [mV]
p08 = 2.85524250e-1 [ms] in [ms]
p09 = 1.23540497e2 [ms] in [ms]
p10 = 5.03128630e1 [mV] in [mV]
p11 = 3.16319213e2 [mV^2] in [mV^2]
p12 = 1.32886316e1 [ms] in [ms]
p13 = 4.13205093 [ms] in [ms]
p14 = 2.30054808 [mV] in [mV]
p15 = 2.67131386e1 [mV] in [mV]
p16 = 1.12598680e-1 [ms] in [ms]
p17 = 1.13596188e3 [ms] in [ms]
p18 = 4.95801337e1 [mV] in [mV]
p19 = 5.53181883 [mV] in [mV]
p20 = 1.97135761e1 [ms] in [ms]
xinf = 1 / (1 + exp(-(V - p03) / p04))
yinf = 1 / (1 + exp((V + 41.1 [mV]) / 6.68 [mV]))
dot(xf) = (xinf - xf) / tau
tau = p05 * exp(-((V + p06) / p07)^2) + p08
in [ms]
dot(yf) = (yinf - yf) / tau
tau = p09 * exp(-(V + p10)^2 / p11) + p12
in [ms]
dot(xs) = (xinf - xs) / tau
tau = p13 / (1 + exp((V + p14) / p15)) + p16
in [ms]
dot(ys) = (yinf - ys) / tau
tau = p17 / (1 + exp((V + p18) / p19)) + p20
in [ms]
Itof = p01 * xf * yf * (V - rev.EK)
desc: Fast component of Ito
in [A/F]
Itos = p02 * xs * ys * (V - rev.EK)
desc: Slow component of Ito
in [A/F]
K_Ito = 0.6375
desc: Manual scaling factor
Ito = K_Ito * (Itof + Itos)
in [A/F]
#
# IKr
#
# Based on Kurata 2002, but refit to hipsc data
#
[ikr]
use membrane.V
p01 = 1.86484701e-2 [mS/uF] in [mS/uF]
p02 = 6.42652882 [mV] in [mV]
p03 = 1.18799783e1 [mV] in [mV]
p04 = 4.01163188e1 [mV] in [mV]
p05 = 1.40822232e1 [mV] in [mV]
p06 = 9.63756681e-1 [ms] in [ms]
p07 = 4.23722972e-2
p08 = 1.70356140e1 [mV] in [mV]
p09 = 1.24135620e-3
p10 = 2.33474212e1 [mV] in [mV]
p11 = 4.56822754e-3
p12 = 1.46185713e1 [mV] in [mV]
p13 = 1.71859133e-4
p14 = 1.73714985e1 [mV] in [mV]
p15 = 8.47065470e-2 [1/ms] in [1/ms]
p16 = 5.21505971e1 [mV] in [mV]
p17 = 7.59956413e-1 [1/ms] in [1/ms]
p18 = 1.07977148e2 [mV] in [mV]
ainf = 1 / (1 + exp(-(V + p02) / p03))
dot(fa) = (ainf - fa) / tau
tau = p06 / (p07 * exp(V / p08) + p09 * exp(-V / p10))
in [ms]
dot(sa) = (ainf - sa) / tau
tau = p06 / (p11 * exp(V / p12) + p13 * exp(-V / p14))
in [ms]
dot(i) = (inf - i) / tau
inf = 1 / (1 + exp((V + p04) / p05))
tau = 1 / (p15 * exp(-V / p16) + p17 * exp(V / p18))
in [ms]
gkr = p01 * (ext.K_o / 1 [mM])^0.59
in [mS/uF]
K_IKr = 1.25
desc: Manual scaling factor
IKr = K_IKr * gkr * (V - rev.EK) * (0.6 * fa + 0.4 * sa) * i
in [A/F]
#
# If
#
# Based on Stewart 2009, but partially refit to hipsc data
#
[if]
use membrane.V
p1 = 5.02968027e-2 [mS/uF] in [mS/uF]
p2 = 7.02798870e-2 [mS/uF] in [mS/uF]
p3 = 1.68826991
p4 = 3.67280874e-2 [1/mV] in [1/mV]
p5 = 5.17628426
p6 = 5.35050858e-2 [1/mV] in [1/mV]
p7 = 4.01031320e3 [ms] in [ms]
dot(y) = (inf - y) / tau
inf = 1 / (1 + exp((V + 80.6 [mV]) / 6.8 [mV]))
tau = p7 / (a + b)
a = exp(-(p3 + (p4 * V)))
b = exp(p5 + (p6 * V))
in [ms]
K_If = 0.85
desc: Manual scaling factor
If_Na = K_If * p1 * y * (V - rev.ENa)
in [A/F]
If_K = K_If * p2 * y * (V - rev.EK)
in [A/F]
If = If_K + If_Na
in [A/F]
#
# ICaL
#
# Based on Kurata 2002 but partially refit to hipsc data
# Note: Kinetics is determined by Ca_sub, driving by Ca_i
#
[ical]
use phys.F, phys.Et
use membrane.V
use calcium.Ca_sub, calcium.Ca_i, ext.Ca_o
p1 = 0.18722844 [L/F/s] in [L/F/s]
p2 = 1.00592002 [mV] in [mV]
p3 = 6.38249172 [mV] in [mV]
p4 = 29.16060561 [mV] in [mV]
p5 = 3.60776178 [mV] in [mV]
p6 = 0.09457633 [mV] in [mV]
Km_fca = 0.00035 [mM] in [mM]
dot(d) = (inf - d) / tau
inf = 1 / (1 + exp(-(V + p2) / p3))
tau = 1 / (a + b)
in [ms]
a = -0.02839 [1/ms/mV] * (V + 35 [mV]) / (exp(-(V + 35 [mV]) / 2.5 [mV]) - 1) - (0.0849 [1/ms/mV] * V) / (exp(-V / 4.8 [mV]) - 1.00000001)
in [1/ms]
b = 0.01143 [1/ms/mV] * (V - 5 [mV]) / (exp((V - 5 [mV]) / 2.5 [mV]) - 1)
in [1/ms]
dot(f) = (inf - f) / tau
inf = 1 / (1 + exp((V + p4) / p5))
tau = 257.1 [ms] * exp(-((V + 32.5 [mV]) / 13.9 [mV])^2) + 44.3 [ms]
in [ms]
dot(fca) = (inf - fca) / tau
inf = Km_fca / (Km_fca + Ca_sub)
tau = inf / 0.035 [1/ms]
in [ms]
K_ICaL = 1.1
desc: Manual scaling factor
ICaL = K_ICaL * p1 * d * f * fca * 4 * ((V - p6) * F) / Et \
* (Ca_i * exp((2 * (V - p6)) / Et) - 0.341 * Ca_o) \
/ (exp((2 * (V - p6)) / Et) - 1)
in [A/F]
#
# IKs
#
# From Courtemanche 1998
#
[iks]
use membrane.V
dot(x) = (inf - x) / tau
inf = 1 / sqrt(1 + exp(-(V - 19.9 [mV]) / 12.7 [mV]))
tau = 1 / (2 * (a + b))
a = 4e-5 [1/ms/mV] * (V - 19.9 [mV]) / (1 - exp(-(V - 19.9 [mV]) / 17 [mV]))
in [1/ms]
b = 3.5e-5 [1/ms/mV] * (V - 19.9 [mV]) / (exp((V - 19.9 [mV]) / 9 [mV]) - 1)
in [1/ms]
in [ms]
K_IKs = 0.3
desc: Manual scaling factor
G_ks = 0.129 [nS/pF]
in [nS/pF]
IKs = K_IKs * G_ks * x^2 * (V - rev.EKs)
in [A/F]
#
# IKur
#
# From Courtemanche 1998. Prepared for refitting but parameters values match
# original Courtemanche model.
#
[ikur]
use membrane.V
p01 = 0.005 [mS/uF] in [mS/uF]
p02 = 0.05 [mS/uF] in [mS/uF]
p03 = 15 [mV] in [mV]
p04 = 13 [mV] in [mV]
p05 = 0.65 [1/ms] in [1/ms]
p06 = 10 [mV] in [mV]
p07 = 8.5 [mV] in [mV]
p08 = 30 [mV] in [mV]
p09 = 59 [mV] in [mV]
p10 = 0.65 [1/ms] in [1/ms]
p11 = 2.5
p12 = 82 [mV] in [mV]
p13 = 17 [mV] in [mV]
p14 = 30.3 [mV] in [mV]
p15 = 9.6 [mV] in [mV]
p16 = 21
p17 = 185 [mV] in [mV]
p18 = 28 [mV] in [mV]
p19 = 1 [1/ms] in [1/ms]
p20 = 158 [mV] in [mV]
p21 = 16 [mV] in [mV]
p22 = 99.45 [mV] in [mV]
p23 = 27.48 [mV] in [mV]
K_q10 = 3
dot(a) = (inf - a) / tau
inf = 1 / (1 + exp(-(V + p14) / p15))
tau = 1 / (K_q10 * (aa + bb))
in [ms]
aa = p05 / (exp(-(V + p06) / p07) + exp((-(V - p08) / p09)))
in [1/ms]
bb = p10 / (p11 + exp((V + p12) / p13))
in [1/ms]
dot(i) = (inf - i) / tau
inf = 1 / (1 + exp((V - p22) / p23))
tau = 1 / (K_q10 * (aa + bb))
in [ms]
aa = 1 [1/ms] / (p16 + exp(-(V - p17) / p18))
in [1/ms]
bb = p19 * exp((V - p20) / p21)
in [1/ms]
gkur = p01 + p02 / (1 + exp(- (V - p03) / p04))
in [mS/uF]
K_IKur = 0.8
desc: Manual scaling factor
IKur = K_IKur * gkur * a^3 * i * (V - rev.EK)
in [A/F]
#
# INaK
#
# From Courtemanche 1998
#
[inak]
use membrane.V
use phys.R, phys.T, phys.F
use sodium.Na_i, ext.Na_o
use potassium.K_i, ext.K_o
K_mNai = 87.5 [mM]
in [mM]
desc: [Na]i half-saturation constant
K_mKo = 1 [mM]
in [mM]
desc: [K]i half-saturation constant
sigma = (1 / 7) * (exp(ext.Na_o / 67.3 [mM]) - 1)
f_NaK = 1 / (1 + 0.1245 * exp(-(0.1 * (F * V)) / (R * T)) + 0.0365 * sigma * exp(-(F * V) / (R * T)))
INaK_max = 4.3 [A/F]
in [A/F]
K_INaK = 3.19447
desc: Manual scaling factor
INaK = K_INaK * INaK_max * f_NaK * (1 / (1 + (K_mNai / Na_i)^1.5)) * (K_o / (K_o + K_mKo))
in [A/F]
#
# INaCa
#
# From Courtemanche 1998
#
[inaca]
use membrane.V
use phys.R, phys.T, phys.F
use sodium.Na_i, ext.Na_o
use calcium.Ca_i, ext.Ca_o
gamma_NaCa = 0.35
k_sat = 0.1
K_mCa = 1.38 [mM]
in [mM]
desc: Half-saturation constant
K_mNa = 10 [mM]
in [mM]
INaCa_max = 100 [A/F]
in [A/F]
K_INaCa = 16.2
desc: Manual scaling factor
numer = (exp(gamma_NaCa * (F / (R * T)) * V) * Na_i^3 * Ca_o - exp((gamma_NaCa - 1) * (F / (R * T)) * V) * Na_o^3 * Ca_i)
in [mM^4]
denom = (K_mNa^3 + Na_o^3) * (K_mCa + Ca_o) * (1 + k_sat * (exp((gamma_NaCa - 1) * (F / (R * T)) * V)))
in [mM^4]
INaCa = K_INaCa * INaCa_max * (numer / denom)
in [A/F]
#
# IKACh
#
# From Kurata 2002
#
[ikach]
use membrane.V
use phys.R, phys.T, phys.F
use potassium.K_i, ext.K_o
gKAch = 0.0011 [A/F/mM] * (K_o / 1 [mM])^0.41
in [A/F/mM]
K_IKAch = 1
desc: Manual scaling factor
IKAch = K_IKAch * gKAch * (K_i - K_o * exp(-V * F / (R * T)))
in [A/F]
#
# IK1
#
# From Grandi-Pandit 2010
#
[ik1]
use membrane.V
use rev.EK
inf = a / (a + b)
a = 1.02 / (1 + exp(0.2385 [1/mV] * (V - EK - 59.215 [mV])))
b = (0.49124 * exp(0.08032 [1/mV] * (V + 5.476 [mV] - EK))
+ exp(0.06175 [1/mV] * (V - 594.31 [mV] - EK))
) / (1 + exp(-0.5143 [1/mV] * (V + 4.753 [mV] - EK)))
K_IK1 = 0.18
desc: Manual scaling factor
IK1 = K_IK1 * 0.35 [mS/uF] * (sqrt(ext.K_o / 5.4 [mM])) * inf * (V - EK)
in [A/F]
#
# Background calcium current
#
# From Courtemanche 1998
#
[ibca]
G_bCa = 0.00113 [mS/uF]
in [mS/uF]
K_IbCa = 1.6
desc: Manual scaling factor
IbCa = K_IbCa * G_bCa * (membrane.V - rev.ECa)
in [A/F]
#
# Background sodium current
#
# From Courtemanche 1998
#
[ibna]
G_bNa = 0.000674 [mS/uF]
in [mS/uF]
K_IbNa = 1.6
desc: Manual scaling factor
IbNa = K_IbNa * G_bNa * (membrane.V - rev.ENa)
in [A/F]
#
# IpCa
#
# From Courtemanche 1998
#
[ipca]
use calcium.Ca_i
IpCa_max = 0.275 [pA/pF]
in [pA/pF]
K_IpCa = 5.2
desc: Manual scaling factor
IpCa = K_IpCa * IpCa_max * Ca_i / (0.0005 [mM] + Ca_i)
in [A/F]
#
# Calcium buffering
#
# From Kurata 2002
#
[cabuf]
use calcium.Ca_i, calcium.Ca_sub, calcium.Ca_rel
Mg_i = 2.5 [mM]
in [mM]
desc: Intracellular magnesium
k_ftc = 88.8 [1/mM/ms] in [1/mM/ms]
k_btc = 0.446 [1/ms] in [1/ms]
dot(tc) = k_ftc * Ca_i * (1 - tc) - k_btc * tc
k_ftmc = 227.7 [1/mM/ms] in [1/mM/ms]
k_btmc = 0.00751 [1/ms] in [1/ms]
dot(tmc) = k_ftmc * Ca_i * (1 - tmc - tmm) - k_btmc * tmc
k_ftmm = 2.277 [1/mM/ms] in [1/mM/ms]
k_btmm = 0.751 [1/ms] in [1/ms]
dot(tmm) = k_ftmm * Mg_i * (1 - tmc - tmm) - k_btmm * tmm
k_fcm = 227.7 [1/mM/ms] in [1/mM/ms]
k_bcm = 0.542 [1/ms] in [1/ms]
dot(cmi) = k_fcm * Ca_i * (1 - cmi) - k_bcm * cmi
dot(cms) = k_fcm * Ca_sub * (1 - cms) - k_bcm * cms
k_fcq = 0.534 [1/mM/ms] in [1/mM/ms]
k_bcq = 0.445 [1/ms] in [1/ms]
dot(cq) = k_fcq * Ca_rel * (1 - cq) - k_bcq * cq
#
# Calcium concentrations
#
# From Kurata 2002
#
[calcium]
use phys.F
use cell.Cm
use cell.V_sub, cell.V_up, cell.Vi, cell.Vrel
use ical.ICaL, ipca.IpCa, ibca.IbCa, inaca.INaCa
tau_difCa = 0.04 [ms]
in [ms]
jCa_diff = (Ca_sub - Ca_i) / tau_difCa
in [mM/ms]
Prel = 50 [1/ms]
in [1/ms]
desc: Maxmimum SR release rate
Krel = 0.0012 [mM]
in [mM]
jrel = Prel * (Ca_rel - Ca_sub) / (1 + (Krel / Ca_sub)^2)
desc: Ca release from JSR
in [mM/ms]
Pup = 0.0075 [M/s]
in [mM/ms]
desc: Maximum SR uptake rate
Kup = 0.0006 [mM]
in [mM]
desc: Half-maximal Ca_up
jup = Pup / (1 + Kup / Ca_i)
in [mM/ms]
desc: Ca uptake by NSR
tau_tr = 27.5 [ms]
in [ms]
jtr = (Ca_up - Ca_rel) / tau_tr
desc: Transfer from NSR to JSR
in [mM/ms]
CM_tot = 0.045 [mM] in [mM]
TC_tot = 0.031 [mM] in [mM]
TMC_tot = 0.062 [mM] in [mM]
CQ_tot = 10 [mM] in [mM]
dot(Ca_i) = (
+ (jCa_diff * V_sub - jup * V_up) / Vi
- (CM_tot * dot(cabuf.cmi)
+ TC_tot * dot(cabuf.tc)
+ TMC_tot * dot(cabuf.tmc)))
in [mM]
dot(Ca_sub) = (
+ jrel * (Vrel / V_sub)
- (ICaL + IpCa + IbCa - 2 * INaCa) * Cm / (2 * F * V_sub)
- (jCa_diff + CM_tot * dot(cabuf.cms)))
in [mM]
dot(Ca_rel) = jtr - jrel - CQ_tot * dot(cabuf.cq)
in [mM]
dot(Ca_up) = jup - jtr * (Vrel / V_up)
in [mM]
#
# Intracellular sodium
#
[sodium]
INa_tot = (+ 3 * inak.INaK
+ 3 * inaca.INaCa
+ ina.INa
+ if.If_Na
+ ibna.IbNa)
in [A/F]
dot(Na_i) = -cell.Cm * INa_tot / (phys.F * cell.Vi)
in [mM]
#
# Intracellular potassium
#
[potassium]
IK_tot = (+ ito.Ito
+ ikr.IKr
+ if.If_K
+ ik1.IK1
+ iks.IKs
+ ikur.IKur
+ ikach.IKAch
- 2 * inak.INaK)
in [A/F]
dot(K_i) = -cell.Cm * IK_tot / (phys.F * cell.Vi)
in [mM]
#
# External concentrations
#
[ext]
Na_o = 140 [mM]
in [mM]
K_o = 5.4 [mM]
in [mM]
Ca_o = 2 [mM]
in [mM]
#
# Physical constants
#
[phys]
R = 8.3143 [J/K/mol]
in [J/K/mol]
T = 310 [K]
in [K]
F = 96.4867 [C/mmol]
in [C/mmol]
Et = (R * T) / F
in [mV]
[cell]
Cm = 100 [pF]
in [pF]
Vcell = 20100 [um^3]
in [um^3]
V_sub = 0.01 * Vcell
in [um^3]
V_up = 0.0116 * Vcell
in [um^3]
Vi = 0.46 * (Vcell - V_sub)
in [um^3]
Vrel = 0.0012 * Vcell
in [um^3]
[rev]
use phys.R, phys.T, phys.F
ENa = (R * T / F) * log(ext.Na_o / sodium.Na_i)
in [mV]
EK = (R * T / F) * log(ext.K_o / potassium.K_i)
in [mV]
EKs = ((R * T) / F) * log((0.01833 * ext.Na_o + ext.K_o) / (0.01833 * sodium.Na_i + potassium.K_i))
in [mV]
ECa = (R * T / (2 * F)) * log(ext.Ca_o / calcium.Ca_i)
in [mV]
[[protocol]]
# Level Start Length Period Multiplier
1 0 0.5 1000 0
[[script]]
import myokit
import matplotlib.pyplot as plt
# Load model
m = get_model()
# Run simulation
s = myokit.Simulation(m)
d = s.run(1000)
# Create figure
fig = plt.figure()
ax = fig.add_subplot()
ax.plot(d.time(), d['membrane.V'])
plt.show()