-
Notifications
You must be signed in to change notification settings - Fork 0
/
fabbri-2017.mmt
631 lines (594 loc) · 16.7 KB
/
fabbri-2017.mmt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
[[model]]
name: fabbri-2017
version: 20240904
mmt_authors: Michael Clerx, Aditi Agrawal
display_name: Fabbri et al., 2017
desc: """
Model of human sino-atrial node (SAN) cells by Fabbri et al. [1], based on
an earlier rabbit model by Severi et al. [2].
This Myokit implementation is based on the CellML code by Alan Fabbri [3],
which was tested in a reproducibility study [4]. The Myokit implementation
has extensive reformatting and unit corrections, and includes a small
offset in IKACh to avoid divide-by-zero errors, as suggested by Alan
Fabbri. It was tested against the original CellML by comparing the
calculated derivatives, which matched to within machine precision.
[1] Fabbri, A. Fantini, M., Wilders, R., & Severi, S. (2017) Computational
analysis of the human sinus node action potential: model development
and effects of mutations. Journal of Physiology, 595.7 pp 2365-2396.
https://doi.org/10.1113/JP273259
[2] Severi, S., Fantini, M., Charawi, L. A., & DiFrancesco, D. (2012) An
updated computational model of rabbit sinoatrial action potential to
investigate the mechanisms of heart rate modulation. Journal of
Physiology 590.18 pp 4483-4499.
https://doi.org/10.1113/jphysiol.2012.229435
[3] CellML code by Alan Fabbri
https://www.mcbeng.it/en/downloads/software/hap-san.html
[4] Physiome reproduction paper
Afshar, N., Fabbri, A., Severi, S., Garny, A., Nickerson, D. (2021)
Reproducibility study of the Fabbri et al. 2017 model of the human
sinus node action potential. Physiome.
https://doi.org/10.36903/physiome.16550526
"""
# Initial values
membrane.V = -4.7787168e1
ina.m = 0.447724
ina.h = 0.003058
ical.d = 0.001921
ical.f = 0.846702
ical.fCa = 0.844449
icat.d = 0.268909
icat.f = 0.020484
if.y = 0.009508
ikur.r = 0.011845
ikur.s = 0.845304
ito.q = 0.430836
ito.r = 0.014523
ikr.pas = 0.283185
ikr.paf = 0.011068
ikr.piy = 0.709051
iks.n = 0.1162
ikach.a = 0.00277
carel.r = 0.9308
carel.o = 6.181512e-9
carel.i = 4.595622e-10
carel.ri = 0.069199
sodium.Na_i = 5
calcium.Ca_i = 9.15641e-6
calcium.Ca_sub = 6.226104e-5
calcium.Ca_nsr = 0.435148
calcium.Ca_jsr = 0.409551
cabuf.fTC = 0.017929
cabuf.fTMC = 0.259947
cabuf.fTMM = 0.653777
cabuf.fCMi = 0.217311
cabuf.fCMs = 0.158521
cabuf.fCQ = 0.138975
#
# Simulation engine
#
[engine]
time = 0 [s] bind time
in [s]
#
# Membrane potential
#
[membrane]
dot(V) = -i_tot / cell.C
in [mV]
label membrane_potential
i_tot = (
+ if.If
+ ikr.IKr
+ iks.IKs
+ ito.Ito
+ inak.INaK
+ inaca.INaCa
+ ina.INa
+ ical.ICaL
+ icat.ICaT
+ ikach.IKACh
+ ikur.IKur
)
in [nA]
label cellular_current
#
# Acetylcholine
#
[ach]
ACh = 0 [mM]
in [mM]
desc: Acetylcholine concentration
#
# Isoproterenol
#
[iso]
iso = 0
desc: Set to 1 to simulate with 1 uM of isoproterenol present
#
# Cell geometry
#
[cell]
C = 5.7e-5 [uF]
in [uF]
label membrane_capacitance
L = 67 [um]
in [um]
R = 3.9 [um]
in [um]
pi = 3.14159265358979312
vcell = 1e-9 [uL/um^3] * pi * R^2 * L
in [uL]
Lsub = 0.02 [um]
in [um]
vsub = 1e-9 [uL/um^3] * 2 * pi * Lsub * (R - Lsub / 2) * L
in [uL]
vi = 0.46 * vcell - vsub
in [uL]
vjsr = 0.0012 * vcell
in [uL]
vnsr = 0.0116 * vcell
in [uL]
#
# Physical constants and temperature
#
[phys]
F = 9.64853415e4 [C/mol]
in [C/mol]
R = 8314.472 [J/kmol/K]
in [mJ/mol/K]
RTF = R * T / F
in [mV]
T = 310 [K]
in [K]
#
# Extracellular concentrations
#
[extra]
Ca_o = 1.8 [mM]
in [mM]
Na_o = 140 [mM]
in [mM]
K_o = 5.4 [mM]
in [mM]
#
# Reversal potentials
#
[rev]
E_K = phys.RTF * log(extra.K_o / potassium.K_i)
in [mV]
E_Na = phys.RTF * log(extra.Na_o / sodium.Na_i)
in [mV]
PKNa = 0.12
E_Ks = phys.RTF * log((extra.K_o + PKNa * extra.Na_o) / (potassium.K_i + PKNa * sodium.Na_i))
in [mV]
E_mh = phys.RTF * log((extra.Na_o + PKNa * extra.K_o) / (sodium.Na_i + PKNa * potassium.K_i))
in [mV]
#
# Fast sodium current
#
[ina]
use membrane.V
gNa = 0.0223 [uS]
in [uS]
gNaL = 0 [uS]
in [uS]
INaF = gNa * m^3 * h * (V - rev.E_mh)
in [nA]
INaL = gNaL * m^3 * (V - rev.E_mh)
in [nA]
INa = INaF + INaL
in [nA]
dot(m) = (inf - m) / tau
inf = 1 / (1 + exp(-(V + 42.0504 [mV]) / 8.3106 [mV]))
tau = 1 / (alpha + beta)
in [s]
E0 = V + 41 [mV]
in [mV]
alpha = if(abs(E0) < 1e-5 [mV], 2000 [1/s], 200 [1/mV/s] * E0 / (1 - exp(-0.1 [1/mV] * E0)))
in [1/s]
beta = 8000 [1/s] * exp(-0.056 [1/mV] * (V + 66 [mV]))
in [1/s]
dot(h) = (inf - h) / tau
inf = 1 / (1 + exp((V + 69.804 [mV]) / 4.4565 [mV]))
tau = 1 / (alpha + beta)
in [s]
alpha = 20 [1/s] * exp(-0.125 [1/mV] * (V + 75 [mV]))
in [1/s]
beta = 2000 [1/s] / (320 * exp(-0.1 [1/mV] * (V + 75 [mV])) + 1)
in [1/s]
#
# L-type calcium current
#
[ical]
use membrane.V, phys.RTF
use calcium.Ca_sub, sodium.Na_i, potassium.K_i
use extra.Ca_o, extra.Na_o, extra.K_o
dot(d) = (inf - d) / tau
inf = 1 / (1 + exp(-(V + 16.4508 [mV] - iso_shift) / (4.3371 [mV] * (1 + iso_slope / 100))))
iso_shift = piecewise(iso.iso > 0, -8 [mV], 0 [mV])
in [mV]
iso_slope = piecewise(iso.iso > 0, -27, 0)
tau = 0.001 [s/ms] / (alpha + beta)
in [s]
av = piecewise(V == -41.8 [mV], -41.80001 [mV], V == -6.8 [mV], -6.80001 [mV], V)
in [mV]
bv = piecewise(V == -1.8 [mV], -1.80001 [mV], V)
in [mV]
alpha = -0.02839 [1/ms/mV] * (av + 41.8 [mV]) / (exp(-(av + 41.8 [mV]) / 2.5 [mV]) - 1) - 0.0849 [1/mV/ms] * (av + 6.8 [mV]) / (exp(-(av + 6.8 [mV]) / 4.8 [mV]) - 1)
in [1/ms]
beta = 0.01143 [1/ms/mV] * (bv + 1.8 [mV]) / (exp((bv + 1.8 [mV]) / 2.5 [mV]) - 1)
in [1/ms]
dot(f) = (inf - f) / tau
tau = 0.001 [s/ms] * (44.3 [ms] + 230 [ms] * exp(-((V + 36 [mV]) / 10 [mV])^2))
in [s]
inf = 1 / (1 + exp((V + 37.4 [mV]) / 5.3 [mV]))
dot(fCa) = (inf - fCa) / tau
inf = Km / (Km + calcium.Ca_sub)
tau = 0.001 [s/ms] * inf / alpha
in [s]
Km = 0.000338 [mM]
in [mM]
alpha = 0.0075 [1/ms]
in [1/ms]
# Block and increase
ACh_block = 0.31 * ach.ACh / (ach.ACh + 9e-5 [mM])
Iso_increase = if(iso.iso > 0, 1.23, 1)
# Current
P_CaL = 0.4578 [nA/mM]
in [nA/mM]
IsiCa = d * f * fCa * V / (RTF * (1 - exp(-V * 2 / RTF))) * (Ca_sub - Ca_o * exp(-2 * V / RTF)) * P_CaL * 2
in [nA]
IsiK = d * f * fCa * V / (RTF * (1 - exp(-V / RTF))) * (K_i - K_o * exp(-V / RTF)) * P_CaL * 0.000365
in [nA]
IsiNa = d * f * fCa * V / (RTF * (1 - exp(-V / RTF))) * (Na_i - Na_o * exp(-V / RTF)) * P_CaL * 1.85e-5
in [nA]
ICaL = (IsiCa + IsiK + IsiNa) * (1 - ACh_block) * 1 * Iso_increase
in [nA]
#
# T-type calcium current
#
[icat]
use membrane.V, phys.RTF
P_CaT = 0.04132 [nA/mM]
in [nA/mM]
ICaT = 2 * P_CaT * V / (RTF * (1 - exp(-1 * V * 2 / RTF))) * (calcium.Ca_sub - extra.Ca_o * exp(-2 * V / RTF)) * d * f
in [nA]
dot(d) = (inf - d) / tau
inf = 1 / (1 + exp(-(V + 38.3 [mV]) / 5.5 [mV]))
tau = 0.001 [s] / (1.068 * exp((V + 38.3 [mV]) / 30 [mV]) + 1.068 * exp(-(V + 38.3 [mV]) / 30 [mV]))
in [s]
dot(f) = (inf - f) / tau
inf = 1 / (1 + exp((V + 58.7 [mV]) / 3.8 [mV]))
tau = 1 [s] / (16.67 * exp(-(V + 75 [mV]) / 83.3 [mV]) + 16.67 * exp((V + 75 [mV]) / 15.38 [mV]))
in [s]
#
# Transient outward potassium current
#
[ito]
use membrane.V
gto = 0.0035 [uS]
in [uS]
Ito = gto * (V - rev.E_K) * q * r
in [nA]
dot(q) = (inf - q) / tau
inf = 1 / (1 + exp((V + 49 [mV]) / 13 [mV]))
tau = 0.001 [s/ms] * 0.6 * (65.17 [ms] / (0.57 * exp(-0.08 [1/mV] * (V + 44 [mV])) + 0.065 * exp(0.1 [1/mV] * (V + 45.93 [mV]))) + 10.1 [ms])
in [s]
dot(r) = (inf - r) / tau
inf = 1 / (1 + exp(-(V - 19.3 [mV]) / 15 [mV]))
tau = 0.001 [s/ms] * 0.66 * 1.4 * (15.59 [ms] / (1.037 * exp(0.09 [1/mV] * (V + 30.61 [mV])) + 0.369 * exp(-0.12 [1/mV] * (V + 23.84 [mV]))) + 2.98 [ms])
in [s]
#
# Rapid delayed-rectifier potassium current
#
[ikr]
use membrane.V
gKr = 0.00424 [uS]
in [uS]
label g_Kr
IKr = gKr * (0.9 * paf + 0.1 * pas) * piy * (V - rev.E_K)
in [nA]
a_inf = 1 / (1 + exp(-(V + 10.0144 [mV]) / 7.6607 [mV]))
dot(paf) = (a_inf - paf) / tau
tau = 1 [s] / (30 * exp(V / 10 [mV]) + exp(-V / 12 [mV]))
in [s]
dot(pas) = (a_inf - pas) / tau
tau = 8.4655354e-1 [s] / (4.2 * exp(V / 17 [mV]) + 0.15 * exp(-V / 21.6 [mV]))
in [s]
dot(piy) = (inf - piy) / tau
inf = 1 / (1 + exp((V + 28.6 [mV]) / 17.1 [mV]))
tau = 1 [s] / (100 * exp(-V / 54.645 [mV]) + 656 * exp(V / 106.157 [mV]))
in [s]
#
# Slow delayed-rectifier potassium current
#
[iks]
use membrane.V
gKs = 0.00065 [uS] * if(iso.iso > 0, 1.2, 1)
in [uS]
IKs = gKs * (V - rev.E_Ks) * n^2
in [nA]
iso_shift = if(iso.iso > 0, -14 [mV], 0 [mV])
in [mV]
dot(n) = (inf - n) / tau
inf = sqrt(1 / (1 + exp(-(V + 0.6383 [mV] - iso_shift) / 10.7071 [mV])))
tau = 1 / (alpha + beta)
in [s]
alpha = 28 [1/s] / (1 + exp(-(V - 40 [mV] - iso_shift) / 3 [mV]))
in [1/s]
beta = 1 [1/s] * exp(-(V - iso_shift - 5 [mV]) / 25 [mV])
in [1/s]
#
# Ultra-rapid potassium current
#
[ikur]
use membrane.V
gKur = 0.0001539 [uS]
in [uS]
IKur = gKur * r * s * (V - rev.E_K)
in [nA]
dot(r) = (inf - r) / tau
inf = 1 / (1 + exp((V + 6 [mV]) / -8.6 [mV]))
tau = 0.009 [s] / (1 + exp((V + 5 [mV]) / 12 [mV])) + 0.0005 [s]
in [s]
dot(s) = (inf - s) / tau
inf = 1 / (1 + exp((V + 7.5 [mV]) / 10 [mV]))
tau = 0.59 [s] / (1 + exp((V + 60 [mV]) / 10 [mV])) + 3.05 [s]
in [s]
#
# Acetylcholine-sensitive potassium current
#
[ikach]
use membrane.V
use ach.ACh
ACh_on = 1
gKACh = 0.00345 [uS]
in [uS]
IKACh = if(ACh > 0 [mM],
a * ACh_on * gKACh * (V - rev.E_K) * (1 + exp((V + 20 [mV]) / 20 [mV])),
0 [nA])
in [nA]
dot(a) = alpha * (1 - a) - beta * a
alpha = 0.025641 [1/s] + alpha_ach
in [1/s]
desc: Alpha gate with slight update to avoid divide-by-zero as suggested by Alan Fabbri
alpha_ach = if(ACh == 0 [mM], 0 [1/s],
(3.5988 [1/s] - 0.025641 [1/s]) / (1 + 1.2155e-6 / (ACh / 1 [mM])^1.6951))
in [1/s]
beta = 10 [1/s] * exp(0.0133 [1/mV] * (V + 40 [mV]))
in [1/s]
#
# Funny current
#
[if]
use membrane.V
use extra.K_o
If = IfNa + IfK
in [nA]
IfK = y * gfK * (V - rev.E_K)
in [nA]
IfNa = y * gfNa * (V - rev.E_Na)
in [nA]
gfK = gf / (alpha + 1)
in [uS]
gfNa = gf * alpha / (alpha + 1)
in [uS]
gf = 0.00427 [uS]
in [uS]
alpha = 0.5927
ach_shift = if(ach.ACh <= 0 [mM], 0 [mV],
-1 [mV] - 9.898 [mV] * (ach.ACh / 1 [mM])^0.618 / ((ach.ACh / 1 [mM])^0.618 + 1.22423e-3))
in [mV]
iso_shift = if(iso.iso > 0, 7.5 [mV], 0 [mV])
in [mV]
dot(y) = (inf - y) / tau
tau = 1 / (0.36 [1/mV/s] * (V + 148.8 [mV] - ach_shift - iso_shift) / (exp(0.066 [1/mV] * (V + 148.8 [mV] - ach_shift - iso_shift)) - 1) + 0.1 [1/mV/s] * (V + 87.3 [mV] - ach_shift - iso_shift) / (1 - exp(-0.2 [1/mV] * (V + 87.3 [mV] - ach_shift - iso_shift)))) - 0.054 [s]
in [s]
inf = if(V < -(80 [mV] - ach_shift - iso_shift),
0.01329 + 0.99921 / (1 + exp((V + 97.134 [mV] - ach_shift - iso_shift) / 8.1752 [mV])),
0.0002501 * exp((V - ach_shift - iso_shift) / -12.861 [mV]))
#
# Sodium-potassium pump current
#
[inak]
use membrane.V
use extra.K_o, sodium.Na_i, rev.E_Na
Iso_increase = piecewise(iso.iso > 0, 1.2, 1)
Km_Kp = 1.4 [mM]
in [mM]
Km_Nap = 14 [mM]
in [mM]
INaK = Iso_increase * INaK_max * (1 + (Km_Kp / K_o)^1.2)^(-1) * (1 + (Km_Nap / Na_i)^1.3)^(-1) * (1 + exp(-(V - E_Na + 110 [mV]) / 20 [mV]))^(-1)
in [nA]
INaK_max = 0.08105 [nA]
in [nA]
#
# Sodium-calcium exchanger
#
[inaca]
use membrane.V, phys.RTF
use extra.Na_o, sodium.Na_i
use extra.Ca_o, calcium.Ca_sub
K_NaCa = 3.343 [nA]
in [nA]
INaCa = K_NaCa * r
in [nA]
# Cycle rate
r = (x2 * k21 - x1 * k12) / (x1 + x2 + x3 + x4)
x1 = k41 * k34 * (k23 + k21) + k21 * k32 * (k43 + k41)
x2 = k32 * k43 * (k14 + k12) + k41 * k12 * (k34 + k32)
x3 = k14 * k43 * (k23 + k21) + k12 * k23 * (k43 + k41)
x4 = k23 * k34 * (k14 + k12) + k14 * k21 * (k34 + k32)
# Rates
di = 1 + Ca_sub / Kci * (1 + exp(-Qci * V / phys.RTF) + Na_i / Kcni) + Na_i / K1ni * (1 + Na_i / K2ni * (1 + Na_i / K3ni))
do = 1 + Ca_o / Kco * (1 + exp(Qco * V / phys.RTF)) + Na_o / K1no * (1 + Na_o / K2no * (1 + Na_o / K3no))
k12 = Ca_sub / Kci * exp(-Qci * V / RTF) / di
k21 = Ca_o / Kco * exp(Qco * V / RTF) / do
k23 = Na_o / K1no * Na_o / K2no * (1 + Na_o / K3no) * exp(-Qn * V / (2 * RTF)) / do
k32 = exp(Qn * V / (2 * phys.RTF))
k34 = Na_o / (K3no + Na_o)
k43 = Na_i / (K3ni + Na_i)
k14 = Na_i / K1ni * Na_i / K2ni * (1 + Na_i / K3ni) * exp(Qn * V / (2 * RTF)) / di
k41 = exp(-Qn * V / (2 * RTF))
Qci = 0.1369
Qco = 0
Qn = 0.4315
K1ni = 395.3 [mM]
in [mM]
K1no = 1628 [mM]
in [mM]
K2ni = 2.289 [mM]
in [mM]
K2no = 561.4 [mM]
in [mM]
K3ni = 26.44 [mM]
in [mM]
K3no = 4.663 [mM]
in [mM]
Kci = 0.0207 [mM]
in [mM]
Kcni = 26.44 [mM]
in [mM]
Kco = 3.663 [mM]
in [mM]
#
# Calcium release from the SR
#
[carel]
use calcium.Ca_sub, calcium.Ca_jsr
JSRCarel = ks * o * (Ca_jsr - Ca_sub)
in [mM/s]
ks = 1.480410851e8 [1/s]
in [1/s]
kom = 660 [1/s]
in [1/s]
kim = 5 [1/s]
in [1/s]
kiCa = 500 [1/mM/s]
in [1/mM/s]
koCa = 10000 [1/mM^2/s]
in [1/mM^2/s]
ec50_SR = 0.45 [mM]
in [mM]
MaxSR = 15
MinSR = 1
kCaSR = MaxSR - (MaxSR - MinSR) / (1 + (ec50_SR / Ca_jsr)^2.5)
koSRCa = koCa / kCaSR
in [1/mM^2/s]
kiSRCa = kiCa * kCaSR
in [1/mM/s]
dot(r) = kim * ri - kiSRCa * Ca_sub * r - (koSRCa * Ca_sub^2 * r - kom * o)
dot(o) = koSRCa * Ca_sub^2 * r - kom * o - (kiSRCa * Ca_sub * o - kim * i)
dot(i) = kiSRCa * Ca_sub * o - kim * i - (kom * i - koSRCa * Ca_sub^2 * ri)
dot(ri) = kom * i - koSRCa * Ca_sub^2 * ri - (kim * ri - kiSRCa * Ca_sub * r)
#
# Calcium buffering
#
[cabuf]
CM_tot = 0.045 [mM]
in [mM]
CQ_tot = 10 [mM]
in [mM]
Mgi = 2.5 [mM]
in [mM]
TC_tot = 0.031 [mM]
in [mM]
TMC_tot = 0.062 [mM]
in [mM]
delta_fCMi = kf_CM * calcium.Ca_i * (1 - fCMi) - kb_CM * fCMi
in [1/s]
delta_fCMs = kf_CM * calcium.Ca_sub * (1 - fCMs) - kb_CM * fCMs
in [1/s]
delta_fCQ = kf_CQ * calcium.Ca_jsr * (1 - fCQ) - kb_CQ * fCQ
in [1/s]
delta_fTC = kf_TC * calcium.Ca_i * (1 - fTC) - kb_TC * fTC
in [1/s]
delta_fTMC = kf_TMC * calcium.Ca_i * (1 - (fTMC + fTMM)) - kb_TMC * fTMC
in [1/s]
delta_fTMM = kf_TMM * Mgi * (1 - (fTMC + fTMM)) - kb_TMM * fTMM
in [1/s]
dot(fCMi) = delta_fCMi
dot(fCMs) = delta_fCMs
dot(fCQ) = delta_fCQ
dot(fTC) = delta_fTC
dot(fTMC) = delta_fTMC
dot(fTMM) = delta_fTMM
kb_CM = 542 [1/s]
in [1/s]
kb_CQ = 445 [1/s]
in [1/s]
kb_TC = 446 [1/s]
in [1/s]
kb_TMC = 7.51 [1/s]
in [1/s]
kb_TMM = 751 [1/s]
in [1/s]
kf_CM = 1642000 [1/mM/s]
in [1/mM/s]
kf_CQ = 175.4 [1/mM/s]
in [1/mM/s]
kf_TC = 88800 [1/mM/s]
in [1/mM/s]
kf_TMC = 227700 [1/mM/s]
in [1/mM/s]
kf_TMM = 2277 [1/mM/s]
in [1/mM/s]
#
# Intracellular calcium fluxes
#
[caflux]
JCa_dif = (calcium.Ca_sub - calcium.Ca_i) / 5.469e-5 [s]
in [mM/s]
Jtr = (calcium.Ca_nsr - calcium.Ca_jsr) / 0.04 [s]
in [mM/s]
Jup = P_up / (1 + exp((-calcium.Ca_i + K_up) / 5e-5 [mM]))
in [mM/s]
K_up = 2.86113e-4 [mM]
in [mM]
P_up = P_up_basal * (1 - b_up)
in [mM/s]
P_up_basal = 5 [mM/s]
in [mM/s]
b_up = piecewise(iso.iso > 0, -0.25, ach.ACh > 0 [mM], 0.7 * ach.ACh / (9e-5 [mM] + ach.ACh), 0)
#
# Intracellular calcium concentrations
#
[calcium]
use cell.vsub, cell.vi, cell.vjsr, cell.vnsr
dot(Ca_jsr) = caflux.Jtr - (carel.JSRCarel + cabuf.CQ_tot * cabuf.delta_fCQ)
in [mM]
dot(Ca_nsr) = caflux.Jup - caflux.Jtr * vjsr / vnsr
in [mM]
dot(Ca_sub) = carel.JSRCarel * vjsr / vsub - ((ical.IsiCa + icat.ICaT - 2 * inaca.INaCa) / (2 * phys.F * vsub) + caflux.JCa_dif + cabuf.CM_tot * cabuf.delta_fCMs)
in [mM]
dot(Ca_i) = (caflux.JCa_dif * vsub - caflux.Jup * vnsr) / vi - (cabuf.CM_tot * cabuf.delta_fCMi + cabuf.TC_tot * cabuf.delta_fTC + cabuf.TMC_tot * cabuf.delta_fTMC)
in [mM]
#
# Intracellular sodium concentration
#
[sodium]
dot(Na_i) = (1 - clamp) * -INa_tot / ((cell.vi + cell.vsub) * phys.F)
in [mM]
INa_tot = ina.INa + if.IfNa + ical.IsiNa + 3 * inak.INaK + 3 * inaca.INaCa
in [nA]
clamp = 1
#
# Intracellular potassium concentration
#
[potassium]
K_i = 140 [mM]
in [mM]
[[protocol]]
# This model is self-excitatory
[[script]]
import matplotlib.pyplot as plt
import myokit
# Get model and protocol, create simulation
m = get_model()
s = myokit.Simulation(m)
# Run simulation
d = s.run(3)
# Display the results
plt.figure()
plt.plot(d.time(), d['membrane.V'])
plt.show()