-
Notifications
You must be signed in to change notification settings - Fork 0
/
kernik-2019.mmt
793 lines (725 loc) · 16.8 KB
/
kernik-2019.mmt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
[[model]]
name: kernik-2019
version: 20240904
mmt_authors: Michael Clerx
display_name: Kernik et al., 2019
desc: """
The 2019 model of induced pluripotent stem-cell derived cardiomyocyte AP by
Kernik et al. [1].
This implementation is based on the original Matlab code provided by the
authors for figure 10 (ipsc_function.m, ICs_baseline.mat and
baseline_parameter_inputs.mat) [2]. It was checked against the original
code by comparing the calculated derivatives.
References:
[1] Kernik, D. C., Morotti, S., Wu, H., Garg, P., Duff, H. J., Kurokawa,
J., Jalife, J., Wu, J. C., Grandi, E., & Clancy, C. E. (2019). A
computational model of induced pluripotent stem‐cell derived
cardiomyocytes incorporating experimental variability from multiple
data sources. The Journal of Physiology, 597(17), 4533-4564.
https://doi.org/10.1113/JP278739
[2] https://github.com/ClancyLabUCD/IPSC-model
Commit 6e8b907f975443ef954863552e784b90799ba5a7
Retrieved on 2021-07-19
"""
# Initial values
membrane.V = -7.559660163885468e+01
casr.Ca_SR = 3.350867967323261e-01
cai.Cai = 2.191916424249644e-04
nai.Nai = 7.169280912509992e+00
ki.Ki = 1.047488243941121e+02
ical.d = 3.949253426529243e-04
ical.f = 1.709901055855403e-01
ical.fCa = 8.777989461340886e-01
ikr.Xr1 = 3.097674857154332e-01
ikr.Xr2 = 4.505771851485186e-01
iks.Xs = 1.537882816509487e-01
ina.m = 2.975499629264136e-02
ina.h = 7.395436078124292e-01
ina.j = 1.245159825745049e-01
ifunny.Xf = 6.403385049126155e-03
ito.r = 2.675978333441606e-04
ito.s = 7.468028106140061e-01
icat.d = 2.701955734715772e-04
icat.f = 7.560329043683934e-01
irel.R = 1.131203634337511e-02
irel.O = 1.650451053123964e-04
irel.I = 1.421536223230116e-02
[engine]
time = 0 [ms]
in [ms]
bind time
pace = 0
bind pace
[membrane]
i_ion = (
+ ik1.i_K1
+ ito.i_to
+ ikr.i_Kr
+ iks.i_Ks
+ ical.i_CaL
+ icat.i_CaT
+ inak.i_NaK
+ ina.i_Na
+ inaca.i_NaCa
+ ipca.i_PCa
+ ifunny.i_f
+ ibna.i_b_Na
+ ibca.i_b_Ca
)
in [A/F]
dot(V) = -(i_ion + stimulus.i_stim)
label membrane_potential
in [mV]
[stimulus]
i_stim = engine.pace * amplitude
in [A/F]
amplitude = -3 [A/F]
in [A/F]
#
# Inward Rectifier K+ current (Ik1)
#
[ik1]
use membrane.V
g_K1 = 0.133785777797606 [nS/pF]
in [nS/pF]
xK11 = 0.477994972217041 [1/ms]
in [1/ms]
xK12 = 27.2427558793487 [mV]
in [mV]
xK13 = 4.92502331781412 [mV]
in [mV]
xK14 = 8.72223760006882 [mV]
in [mV]
xK15 = 56.6361974998244 [mV]
in [mV]
inf = a / (a + b)
a = xK11 * exp((V + xK13) / xK12)
in [1/ms]
b = 1 [1/ms] * exp((V + xK15) / xK14)
in [1/ms]
i_K1 = g_K1 * sqrt(extra.Ko / 5.4 [mM]) * inf * (V - erev.E_K)
in [A/F]
#
# Rapid Delayed Rectifier Current (Ikr)
#
[ikr]
use membrane.V
g_Kr = 0.218025 [nS/pF]
in [nS/pF]
Xr1_1 = 0.00574885237435 [1/ms]
in [1/ms]
Xr1_2 = 13.6234926362576 [mV]
in [mV]
Xr1_5 = 0.047630571181836
Xr1_6 = -7.06808742965549 [mV]
in [mV]
Xr2_1 = 0.012456640526827 [1/ms]
in [1/ms]
Xr2_2 = -25.9944581644377 [mV]
in [mV]
Xr2_5 = 37.3426331501041
Xr2_6 = 22.0919642353902 [mV]
in [mV]
tau_1_offset = 50 [ms]
in [ms]
tau_2_offset = 0 [ms]
in [ms]
Xr1_3 = Xr1_5 * Xr1_1
in [1/ms]
Xr2_3 = Xr2_5 * Xr2_1
in [1/ms]
Xr1_4 = 1 / (1 / Xr1_2 + 1 / Xr1_6)
in [mV]
Xr2_4 = 1 / (1 / Xr2_2 + 1 / Xr2_6)
in [mV]
dot(Xr1) = (inf - Xr1) / tau
desc: activation in i_Kr_Xr1
a = Xr1_1 * exp(V / Xr1_2)
in [1/ms]
b = Xr1_3 * exp(V / Xr1_4)
in [1/ms]
inf = a / (a + b)
tau = 1 / (a + b) + tau_1_offset
in [ms]
dot(Xr2) = (inf - Xr2) / tau
desc: inactivation in i_Kr_Xr2
a = Xr2_1 * exp(V / Xr2_2)
in [1/ms]
b = Xr2_3 * exp(V / Xr2_4)
in [1/ms]
inf = a / (a + b)
tau = 1 / (a + b) + tau_2_offset
in [ms]
i_Kr = g_Kr * sqrt(extra.Ko / 5.4 [mM]) * Xr1 * Xr2 * (V - erev.E_K)
in [A/F]
#
# Slow delayed rectifier current (IKs)
#
[iks]
use membrane.V
ks1 = 0.00116558448 [1/ms]
in [1/ms]
ks2 = 66726.8386758936 [mV]
in [mV]
ks5 = 0.28045890825
ks6 = -18.86697157291 [mV]
in [mV]
tauks_const = 4.74115e-6 [ms]
in [ms]
ks3 = ks5 * ks1
in [1/ms]
ks4 = 1 / (1 / ks2 + 1 / ks6)
in [mV]
dot(Xs) = (inf - Xs) / tau
desc: activation in i_Ks
a = ks1 * exp(V / ks2)
in [1/ms]
b = ks3 * exp(V / ks4)
in [1/ms]
inf = a / (a + b)
tau = (1 / (a + b)) + tauks_const
in [ms]
g_Ks = 0.0077 [nS/pF]
in [nS/pF]
i_Ks = g_Ks * Xs^2 * (V - erev.E_K)
in [A/F]
#
# Transient outward current (Ito)
#
[ito]
use membrane.V
g_to = 0.1178333333333 [nS/pF]
in [nS/pF]
r1 = 0.0553614181713 [1/ms]
in [1/ms]
r2 = 11.6842023429669 [mV]
in [mV]
r5 = 3.9891810803775
r6 = -11.0471393012032 [mV]
in [mV]
s1 = 0.0003442309443 [1/ms]
in [1/ms]
s2 = -17.6344722898096 [mV]
in [mV]
s5 = 186.760536909695
s6 = 8.1809338733227 [mV]
in [mV]
tau_r_const = 0.6967584211715 [ms]
in [ms]
tau_s_const = 11.2244577239469 [ms]
in [ms]
r3 = r5 * r1
in [1/ms]
r4 = 1 / (1 / r2 + 1 / r6)
in [mV]
s3 = s5 * s1
in [1/ms]
s4 = 1 / (1 / s2 + 1 / s6)
in [mV]
dot(r) = (inf - r) / tau
desc: activation in i_to
a = r1 * exp(V / r2)
in [1/ms]
b = r3 * exp(V / r4)
in [1/ms]
inf = a / (a + b)
tau = 1 / (a + b) + tau_r_const
in [ms]
dot(s) = (inf - s) / tau
desc: inactivation in i_to
a = s1 * exp(V / s2)
in [1/ms]
b = s3 * exp(V / s4)
in [1/ms]
inf = a / (a + b)
tau = 1 / (a + b) + tau_s_const
in [ms]
i_to = g_to * r * s * (V - erev.E_K)
in [A/F]
#
# L-type Ca2+ current (ICaL)
#
[ical]
use membrane.V
use phys.FRT, phys.FFRT
use cai.Cai, nai.Nai, ki.Ki
use extra.Cao, extra.Nao, extra.Ko
p_CaL = 0.308027691379 [L/s/F]
in [L/s/F]
d1 = 12.966294189722 [1/ms]
in [1/ms]
d2 = 7.079145964711 [mV]
in [mV]
d5 = 0.044909415507
d6 = -6.909880369242 [mV]
in [mV]
f1 = 0.000512589826 [1/ms]
in [1/ms]
f2 = -49.50571203387 [mV]
in [mV]
f5 = 1931.21122351432
f6 = 5.730027499699 [mV]
in [mV]
taud_const = 1.65824694683 [ms]
in [ms]
tauf_const = 100.462559171103 [ms]
in [ms]
d3 = d5 * d1
in [1/ms]
d4 = 1 / (1 / d2 + 1 / d6)
in [mV]
f3 = f5 * f1
in [1/ms]
f4 = 1 / (1 / f2 + 1 / f6)
in [mV]
dot(d) = (inf - d) / tau
desc: activation in i_CaL
a = d1 * exp(V / d2)
in [1/ms]
b = d3 * exp(V / d4)
in [1/ms]
inf = a / (a + b)
tau = 1 / (a + b) + taud_const
in [ms]
dot(f) = (inf - f) / tau
desc: voltage-dependent inactivation in i_CaL
a = f1 * exp(V / f2)
in [1/ms]
b = f3 * exp(V / f4)
in [1/ms]
inf = a / (a + b)
tau = (1 / (a + b)) + tauf_const
in [ms]
dot(fCa) = k_fca * (fCa_inf - fCa) / tau_fCa
desc: calcium-dependent inactivation in i_CaL, from Ten tusscher 2004
k_fca = if(fCa_inf > fCa and V > -60 [mV], 0, 1)
fCa_inf = (alpha_fCa + beta_fCa + gamma_fCa + 0.23) / 1.46
scale = 1.2
alpha_fCa = 1 / (1 + (scale * cai.Cai / 0.000325 [mM]) ^ 8)
beta_fCa = 0.1 / (1 + exp((scale * cai.Cai - 0.0005 [mM]) / 0.0001 [mM]))
gamma_fCa = 0.2 / (1 + exp((scale * cai.Cai - 0.00075 [mM]) / 0.0008 [mM]))
tau_fCa = 2 [ms]
in [ms]
p_CaL_shannonCa = 5.4e-4
p_CaL_shannonNa = 1.5e-8
p_CaL_shannonK = 2.7e-7
p_CaL_shannonTot = p_CaL_shannonCa + p_CaL_shannonNa + p_CaL_shannonK
p_CaL_shannonCap = p_CaL_shannonCa / p_CaL_shannonTot
p_CaL_shannonNap = p_CaL_shannonNa / p_CaL_shannonTot
p_CaL_shannonKp = p_CaL_shannonK / p_CaL_shannonTot
p_CaL_Ca = p_CaL_shannonCap * p_CaL
in [L/s/F]
p_CaL_Na = p_CaL_shannonNap * p_CaL
in [L/s/F]
p_CaL_K = p_CaL_shannonKp * p_CaL
in [L/s/F]
i_CaL_Ca = ibarca * d * f * fCa
ibarca = p_CaL_Ca * 4 * V * FFRT * (0.341 * Cai * exp(2 * V * FRT) - 0.341 * Cao) / (exp(2 * V * FRT) - 1)
in [A/F]
in [A/F]
i_CaL_Na = ibarna * d * f * fCa
ibarna = p_CaL_Na * V * FFRT * (0.75 * Nai * exp(V * FRT) - 0.75 * Nao) / (exp(V * FRT) - 1)
in [A/F]
in [A/F]
i_CaL_K = ibark * d * f * fCa
ibark = p_CaL_K * V * FFRT * (0.75 * Ki * exp(V * FRT) - 0.75 * Ko) / (exp(V * FRT) - 1)
in [A/F]
in [A/F]
i_CaL = i_CaL_Ca + i_CaL_Na + i_CaL_K
in [A/F]
#
# T-type Calcium Current (ICaT)
#
# SAN T-TYPE Ca2 + model (Demir et al., Maltsev-Lakatta )
# G_CaT determined by fit to Kurokawa IV
#
[icat]
use membrane.V
g_CaT = 0.185 [nS/pF]
in [nS/pF]
dot(d) = (inf - d) / tau
desc: activation in i_CaT
inf = 1 / (1 + exp((V + 26.3 [mV]) / -6 [mV]))
tau = 1 / (1.068 [1/ms] * exp((V + 26.3 [mV]) / 30 [mV]) + 1.068 [1/ms] * exp((V + 26.3 [mV]) / -30 [mV]))
in [ms]
dot(f) = (inf - f) / tau
desc: inactivation in i_CaT
inf = 1 / (1 + exp((V + 61.7 [mV]) / 5.6 [mV]))
tau = 1 / (0.0153 [1/ms] * exp(-(V + 61.7 [mV]) / 83.3 [mV]) + 0.015 [1/ms] * exp((V + 61.7 [mV]) / 15.38 [mV]))
in [ms]
i_CaT = g_CaT * d * f * (V - erev.E_Ca)
in [A/F]
#
# Sodium Current (INa)
#
[ina]
use membrane.V
g_Na = 9.720613409241 [nS/pF]
in [nS/pF]
m1 = 108.045846384818 [1/ms]
in [1/ms]
m2 = 13.107015733941 [mV]
in [mV]
m5 = 0.002326914367
m6 = -7.917726289513 [mV]
in [mV]
h1 = 0.003626598864 [1/ms]
in [1/ms]
h2 = -19.839358860026 [mV]
in [mV]
h5 = 9663.29497711474
h6 = 7.395503564613 [mV]
in [mV]
j1 = 0.000512257182 [1/ms]
in [1/ms]
j2 = -66.583755502652 [mV]
in [mV]
tau_m_const = 0.031977580384 [ms]
in [ms]
tau_h_const = 0.167331502516 [ms]
in [ms]
tau_j_const = 0.951088724962 [ms]
in [ms]
m3 = m5 * m1
in [1/ms]
m4 = 1 / (1 / m2 + 1 / m6)
in [mV]
h3 = h5 * h1
in [1/ms]
h4 = 1 / (1 / h2 + 1 / h6)
in [mV]
j5 = h5
j6 = h6
in [mV]
j3 = j5 * j1
in [1/ms]
j4 = 1 / (1 / j2 + 1 / j6)
in [mV]
dot(m) = (inf - m) / tau
desc: activation in i_Na
a = m1 * exp(V / m2)
in [1/ms]
b = m3 * exp(V / m4)
in [1/ms]
inf = a / (a + b)
tau = 1 / (a + b) + tau_m_const
in [ms]
dot(h) = (inf - h) / tau
desc: inactivation in i_Na
a = h1 * exp(V / h2)
in [1/ms]
b = h3 * exp(V / h4)
in [1/ms]
inf = a / (a + b)
tau = 1 / (a + b) + tau_h_const
in [ms]
dot(j) = (inf - j) / tau
desc: slow inactivation in i_Na
a = j1 * exp(V / j2)
in [1/ms]
b = j3 * exp(V / j4)
in [1/ms]
inf = a / (a + b)
tau = 1 / (a + b) + tau_j_const
in [ms]
i_Na = g_Na * m^3 * h * j * (V - erev.E_Na)
in [A/F]
#
# Funny/HCN current (If)
#
[ifunny]
use membrane.V
g_f = 0.0435 [nS/pF]
in [nS/pF]
xF1 = 5.7897e-7 [1/ms]
in [1/ms]
xF2 = -14.5897121702 [mV]
in [mV]
xF5 = 20086.6502378844
xF6 = 10.20235284528 [mV]
in [mV]
xF_const = 23.94529134653 [ms]
in [ms]
xF3 = xF5 * xF1
in [1/ms]
xF4 = 1 / (1 / xF2 + 1 / xF6)
in [mV]
dot(Xf) = (inf - Xf) / tau
desc: inactivation in i_f
a = xF1 * exp(V / xF2)
in [1/ms]
b = xF3 * exp(V / xF4)
in [1/ms]
inf = a / (a + b)
tau = 1 / (a + b) + xF_const
in [ms]
NatoK_ratio = .491
desc: Verkerk et al. 2013
Na_frac = NatoK_ratio / (NatoK_ratio + 1)
i_fNa = Na_frac * g_f * Xf * (V - erev.E_Na)
in [A/F]
i_fK = (1 - Na_frac) * g_f * Xf * (V - erev.E_K)
in [A/F]
i_f = i_fNa + i_fK
in [A/F]
#
# Na+/Ca2+ Exchanger current (INaCa)
# Ten Tusscher formulation
#
[inaca]
use membrane.V
use phys.FRT
use nai.Nai, cai.Cai
use extra.Nao, extra.Cao
KmCa = 1.38 [mM]
desc: cai half-saturation constant
in [mM]
KmNai = 87.5 [mM]
desc: Nai half-saturation constant
in [mM]
Ksat = 0.1
desc: saturation factor
gamma = 0.35 * 2
desc: voltage dependence parameter
alpha = 2.5 * 1.1
desc: factor to enhance outward nature of inaca
kNaCa = 1000 * 1.1 [A/F]
desc: maximal inaca
in [A/F]
i_NaCa = kNaCa * (exp(gamma * V * FRT) * Nai^3 * Cao - exp((gamma - 1) * V * FRT) * Nao^3 * Cai * alpha) / ((KmNai^3 + Nao^3) * (KmCa + Cao) * (1 + Ksat * exp((gamma - 1) * V * FRT)))
in [A/F]
#
# Na+/K+ pump current (INaK)
# Ten Tusscher formulation
#
[inak]
use membrane.V
use phys.FRT
use nai.Nai, ki.Ki
use extra.Nao, extra.Ko
Km_K = 1 [mM]
desc: Ko half-saturation constant
in [mM]
Km_Na = 40 [mM]
desc: Nai half-saturation constant
in [mM]
PNaK = 1.362 * 1.818 [A/F]
desc: maximal nak
in [A/F]
i_NaK = PNaK * Ko * Nai / ((Ko + Km_K) * (Nai + Km_Na) * (1 + 0.1245 * exp(-0.1 * V * FRT) + 0.0353 * exp(-V * FRT)))
in [A/F]
#
# SR Uptake / SERCA (J_up):
# Ten Tusscher formulation
#
[iup]
Kup = 0.00025 * 0.702 [mM]
in [mM]
VmaxUp = 0.000425 * 0.26 [mM/ms]
in [mM/ms]
i_up = VmaxUp / (1 + Kup^2 / cai.Cai^2)
in [mM/ms]
#
# SR Leak (J_leak):
# Ten Tusscher formulation
#
[ileak]
V_leak = 0.00008 * 0.02 [1/ms]
in [1/ms]
i_leak = (casr.Ca_SR - cai.Cai) * V_leak
in [mM/ms]
#
# SR Release / RYR (J_rel)
#
# re-fit parameters. scaled to account for differences in calcium concentration
# in cleft (cleft is used in shannon - bers model geometry, not in this model
# geometry)
#
[irel]
use cai.Cai, casr.Ca_SR
ks = 12.5 [1/ms]
in [1/ms]
koCa = 56320 * 11.43025 [1/ms/mM^2]
in [1/ms/mM^2]
kiCa = 54 * 0.3425 [1/mM/ms]
in [1/mM/ms]
kom = 1.5 * 0.1429 [1/ms]
in [1/ms]
kim = 0.001 * 0.5571 [1/ms]
in [1/ms]
ec50SR = 0.45 [mM]
in [mM]
MaxSR = 15
MinSR = 1
kCaSR = MaxSR - (MaxSR - MinSR) / (1 + (ec50SR / Ca_SR)^2.5)
koSRCa = koCa / kCaSR
in [1/mM^2/ms]
kiSRCa = kiCa * kCaSR
in [1/mM/ms]
dot(R) = kim * RI - kiSRCa * Cai * R - koSRCa * Cai ^ 2 * R + kom * O
dot(O) = koSRCa * Cai ^ 2 * R - kom * O - kiSRCa * Cai * O + kim * I
dot(I) = kiSRCa * Cai * O - kim * I - kom * I + koSRCa * Cai ^ 2 * RI
RI = 1 - R - O - I
i_rel = ks * O * (Ca_SR - Cai) * (geom.V_SR / geom.Vc)
in [mM/ms]
#
# Background Sodium (I_bNa):
# Ten Tusscher formulation
#
[ibna]
g_b_Na = .00029 [nS/pF] * 1.5
in [nS/pF]
i_b_Na = g_b_Na * (membrane.V - erev.E_Na)
in [A/F]
#
# Background Calcium (I_bCa)
# Ten Tusscher formulation
#
[ibca]
g_b_Ca = .000592 [nS/pF] * 0.62
in [nS/pF]
i_b_Ca = g_b_Ca * (membrane.V - erev.E_Ca)
in [A/F]
#
# Calcium SL Pump (I_pCa)
# Ten Tusscher formulation
#
[ipca]
use cai.Cai
g_PCa = 0.025 [A/F] * 10.5
in [A/F]
KPCa = 0.0005 [mM]
in [mM]
i_PCa = g_PCa * Cai / (Cai + KPCa)
in [A/F]
#
# CaSR (millimolar)
#
[casr]
desc: rapid equilibrium approximation equations - - not as formulated in ten Tusscher 2004 text
Buf_SR = 10 * 1.2 [mM]
in [mM]
Kbuf_SR = 0.3 [mM]
in [mM]
Ca_SR_bufSR = 1 / (1 + Buf_SR * Kbuf_SR / (Ca_SR + Kbuf_SR) ^ 2)
dot(Ca_SR) = Ca_SR_bufSR * geom.Vc / geom.V_SR * (iup.i_up - irel.i_rel - ileak.i_leak)
in [mM]
#
# Cai (millimolar)
#
[cai]
descd: rapid equilibrium approximation equations - - not as formulated in ten Tusscher 2004 text
Buf_C = 0.06 [mM]
in [mM]
Kbuf_C = .0006 [mM]
in [mM]
Cai_bufc = 1 / (1 + Buf_C * Kbuf_C / (Cai + Kbuf_C) ^ 2)
dot(Cai) = Cai_bufc * (
- iup.i_up
+ ileak.i_leak
+ irel.i_rel
- geom.Cm / (2 * geom.Vc * phys.F) * (
+ ical.i_CaL_Ca
+ icat.i_CaT
+ ibca.i_b_Ca
+ ipca.i_PCa
- 2 * inaca.i_NaCa
))
in [mM]
#
# Nai (millimolar) (in sodium_dynamics)
#
[nai]
dot(Nai) = -geom.Cm / (phys.F * geom.Vc) * (
+ ina.i_Na
+ ibna.i_b_Na
+ ifunny.i_fNa
+ 3 * inak.i_NaK
+ 3 * inaca.i_NaCa
+ ical.i_CaL_Na
)
in [mM]
#
# Ki (millimolar) (in potatssium_dynamics)
#
[ki]
dot(Ki) = -geom.Cm / (phys.F * geom.Vc) * (
+ ik1.i_K1
+ ito.i_to
+ ikr.i_Kr
+ iks.i_Ks
+ ifunny.i_fK
- 2 * inak.i_NaK
+ ical.i_CaL_K
)
in [mM]
#
# Cell geometry
#
[geom]
Cm = 60 [pF]
in [pF]
V_tot = 3960 [um^3]
in [um^3]
desc: V_total data from Hwang et al.
Vc_tenT = 16404 [um^3]
in [um^3]
VSR_tenT = 1094 [um^3]
in [um^3]
V_tot_tenT = Vc_tenT + VSR_tenT
desc: V_c and V_SR proportionally scaled from Ten Tusscher 2004 values
in [um^3]
Vc = V_tot * (Vc_tenT / V_tot_tenT)
in [um^3]
desc: 3712.4 um ^ 3 (93.7% total volume)
V_SR = V_tot * (VSR_tenT / V_tot_tenT)
desc: 247.6 um ^ 3 (6.3% total volume)
in [um^3]
#
# Physical constants
#
[phys]
T = 310 [K]
in [K]
R = 8.314472 [J / mol / K]
in [J / mol / K]
F = 96.4853415 [C / mmol]
in [C / mmol]
RTF = R * T / F
in [mV]
FRT = F / (R * T)
in [1/mV]
FFRT = F * FRT
in [C/mmol/mV]
#
# External concentrations
#
[extra]
Ko = 5.4 [mM]
in [mM]
Cao = 1.8 [mM]
in [mM]
Nao = 140 [mM]
in [mM]
#
# Reversal potentials
#
[erev]
use phys.RTF
E_Ca = 0.5 * RTF * log(extra.Cao / cai.Cai)
in [mV]
E_Na = RTF * log(extra.Nao / nai.Nai)
in [mV]
E_K = RTF * log(extra.Ko / ki.Ki)
in [mV]
[[script]]
import myokit
import matplotlib.pyplot as plt
m = get_model()
s = myokit.Simulation(m)
d = s.run(3000)
plt.figure()
plt.xlabel('Time (ms)')
plt.ylabel('Membrane potential (mV)')
plt.plot(d.time(), d['membrane.V'])
plt.show()