-
Notifications
You must be signed in to change notification settings - Fork 0
/
stewart-2009.mmt
586 lines (544 loc) · 15.5 KB
/
stewart-2009.mmt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
[[model]]
name: stewart-2009
version: 20240904
mmt_authors: Michael Clerx
display_name: Stewart et al., 2009
desc: """
The 2009 model of the human Purinkje action potential by Stewart et
al. [1], based on the ventricular model by Ten Tusscher et al. [2].
This implementation was created from the CellML code made available with
the original publication [2]. Several "cosmetic" changes were made without
affecting the equations, which were tested against the original CellML and
which matched to within rounding error precision.
- The state variables were ordered as in the publication
- The components were ordered as in the publication, and were annotated
with links to the relevant document section.
In addition, incorrect units in F, R, Cm, gCaL, Vc, Vss, and Vsr were
corrected.
The stimulus was set to 0.5ms and approximately twice the threshold for
(immediate) depolarisation.
[1] Stewart, P., Aslanidi, O. V., Noble, D., Noble, P. J., Boyett, M. R., &
Zhang, H. (2009). Mathematical model of the electrical action potential
of Purkinje fibre cells. Philosophical Transactions of the Royal
Society, 367(1896), 2225-2255.
https://doi.org/10.1098/rsta.2008.0283
[2] Ten Tusscher, K. H. W. J., & Panfilov, A. V. (2006). Alternans and
spiral breakup in a human ventricular tissue model. American Journal of
Physiology. Heart and Circulatory Physiology, 291(3), H1088-H1100.
https://doi.org/10.1152/ajpheart.00109.2006
[3] https://models.physiomeproject.org/exposure/38cf8387b0707f0ef6947f009710aeb5
Retrieved on 2021-10-27
An extract from the CellML file's meta data follows below:
---------------------------------------------------------------------------
Penny Noble
DPAG, University of Oxford
Model Status
This CellML ersion of the model has been checked in COR and OpenCell. The
units are consistent and the model runs to recreate the published results.
Model Structure
In the paper described here, Philip Stewart and colleagues present a
details of their newly developed model for the human Purkinje cell
including validation against experimental data. Ionic mechanisms underlying
the heterogeneity between the Purkinje fibre and ventricular action
potentials in humans and other species were analysed. The newly developed
Purkinje fibre cell model adds a new member to the family of human cardiac
cell models developed previously for the sino-atrial node, atrial and
ventricular cells, which can be incorporated into an anatomical model of
human heart with details of its electrophysiological heterogeneity and
anatomical complexity.
"""
# Initial values
membrane.V = -7.12864384994752527e+01
calcium.Ca_i = 1.02363913704157998e-04
calcium.Ca_SR = 3.14149868138687083e+00
calcium.Ca_ss = 3.81250245527617196e-04
sodium.Na_i = 8.80505373054986329e+00
potassium.K_i = 1.36773426842998674e+02
ina.m = 2.83293473203283658e-02
ina.h = 2.51110676365191021e-01
ina.j = 2.65680422809985550e-01
ikr.Xr1 = 1.34628009070351228e-02
ikr.Xr2 = 3.32697379577155727e-01
iks.Xs = 8.40127007165385360e-03
ito.r = 8.84290083740064937e-04
ito.s = 9.68749754333663282e-01
ical.d = 2.16290842830038621e-04
ical.f1 = 9.68969771502977917e-01
ical.f2 = 9.96328488888527430e-01
ical.fCass = 9.99935288766206076e-01
if.y = 3.84052487230444398e-02
irel.R_prime = 9.84086493577585375e-01
#
# Simulation variables
#
[engine]
time = 0 [ms]
in [ms]
bind time
pace = 0
bind pace
#
# Membrane potential
#
[membrane]
use stimulus.i_stim
dot(V) = -(i_ion + i_stim + i_diff)
in [mV]
label membrane_potential
i_ion = sodium.INa_tot + potassium.IK_tot + calcium.ICa_tot
in [A/F]
label cellular_current
i_diff = 0 [A/F]
in [A/F]
bind diffusion_current
#
# Stimulus current
#
[stimulus]
i_stim = engine.pace * amplitude
in [A/F]
amplitude = -10 [A/F] * 2
in [A/F]
#
# (a) Inward rectifier current, IK1
# Appendix page 2242
#
[ik1]
use membrane.V
inf = 1 / (1 + exp(0.1 [1/mV] * (V + 75.44 [mV])))
g_K1 = 0.065 [mS/uF]
in [mS/uF]
i_K1 = g_K1 * inf * (V - 8 [mV] - nernst.E_K)
in [A/F]
#
# (b) Transient outward current, ITo
# Appendix page 2242
#
[ito]
use membrane.V
dot(r) = (r_inf - r) / tau_r
r_inf = 1 / (1 + exp((20 [mV] - V) / 13 [mV]))
tau_r = 10.45 [ms] * exp(-(V + 40 [mV])^2 / 1800 [mV^2]) + 7.3 [ms]
in [ms]
dot(s) = (s_inf - s) / tau_s
s_inf = 1 / (1 + exp((V + 27 [mV]) / 13 [mV]))
tau_s = 85 [ms] * exp(-(V + 25 [mV])^2 / 320 [mV^2]) + 5 [ms] / (1 + exp((V - 40 [mV]) / 5 [mV])) + 42 [ms]
in [ms]
g_to = 0.08184 [mS/uF]
in [mS/uF]
i_to = g_to * r * s * (V - nernst.E_K)
in [A/F]
#
# (c) Sustained current, Isus
# Appendix page 2243
#
[isus]
use membrane.V
a = 1 / (1 + exp((5 [mV] - V) / 17 [mV]))
g_sus = 0.0227 [mS/uF]
in [mS/uF]
i_sus = g_sus * a * (V - nernst.E_K)
in [A/F]
#
# (d) Hyperpolarization-activated current, If
# Appendix page 2243
# Described in detail on page 2229
#
[if]
use membrane.V
dot(y) = (y_inf - y) / tau_y
alpha_y = 1 [1/ms] * exp(-2.9 - 0.04 [1/mV] * V)
in [1/ms]
beta_y = 1 [1/ms] * exp(3.6 + 0.11 [1/mV] * V)
in [1/ms]
tau_y = 4000 / (alpha_y + beta_y)
in [ms]
y_inf = 1 / (1 + exp((V + 80.6 [mV]) / 6.8 [mV]))
g_f_K = 0.0234346 [mS/uF]
in [mS/uF]
g_f_Na = 0.0145654 [mS/uF]
in [mS/uF]
i_f_K = y * g_f_K * (V - nernst.E_K)
in [A/F]
i_f_Na = y * g_f_Na * (V - nernst.E_Na)
in [A/F]
i_f = i_f_Na + i_f_K
in [A/F]
#
# (e) Fast sodium current, INa
# Appendix page 2243
#
[ina]
use membrane.V
dot(m) = (inf - m) / tau
alpha = 1 / (1 + exp((-60 [mV] - V) / 5 [mV]))
beta = 0.1 / (1 + exp((V + 35 [mV]) / 5 [mV])) + 0.1 / (1 + exp((V - 50 [mV]) / 200 [mV]))
tau = 1 [ms] * alpha * beta
in [ms]
inf = 1 / (1 + exp((-56.86 [mV] - V) / 9.03 [mV]))^2
dot(h) = (inf - h) / tau
alpha = if(V < -40 [mV], 0.057 [1/ms] * exp(-(V + 80 [mV]) / 6.8 [mV]), 0 [1/ms])
in [1/ms]
beta = if(V < -40 [mV],
2.7 [1/ms] * exp(0.079 [1/mV] * V) + 310000 [1/ms] * exp(0.3485 [1/mV] * V),
0.77 [1/ms] / (0.13 * (1 + exp((V + 10.66 [mV]) / -11.1 [mV]))))
in [1/ms]
tau = 1 / (alpha + beta)
in [ms]
inf = 1 / (1 + exp((V + 71.55 [mV]) / 7.43 [mV]))^2
dot(j) = (inf - j) / tau
alpha = if(V < -40 [mV],
(-25428 [1/ms] * exp(0.2444 [1/mV] * V) - 6.948e-6 [1/ms] * exp(-0.04391 [1/mV] * V)) * (V + 37.78 [mV]) / 1 [mV] / (1 + exp(0.311 [1/mV] * (V + 79.23 [mV]))),
0 [1/ms])
in [1/ms]
beta = if(V < -40 [mV],
0.02424 [1/ms] * exp(-0.01052 [1/mV] * V) / (1 + exp(-0.1378 [1/mV] * (V + 40.14 [mV]))),
0.6 [1/ms] * exp(0.057 [1/mV] * V) / (1 + exp(-0.1 [1/mV] * (V + 32 [mV]))))
in [1/ms]
tau = 1 / (alpha + beta)
in [ms]
inf = 1 / (1 + exp((V + 71.55 [mV]) / 7.43 [mV]))^2
g_Na = 130.5744 [mS/uF]
in [mS/uF]
i_Na = g_Na * m^3 * h * j * (V - nernst.E_Na)
in [A/F]
#
# (f) L-type calcium current, ICaL
# Appendix page 2244
#
[ical]
use membrane.V
use phys.FRT, phys.FFRT
use calcium.Ca_ss, extra.Ca_o
dot(d) = (d_inf - d) / tau_d
alpha_d = 1.4 / (1 + exp((-35 [mV] - V) / 13 [mV])) + 0.25
beta_d = 1.4 / (1 + exp((V + 5 [mV]) / 5 [mV]))
gamma_d = 1 [ms] / (1 + exp((50 [mV] - V) / 20 [mV]))
in [ms]
tau_d = 1 [ms] * alpha_d * beta_d + gamma_d
in [ms]
d_inf = 1 / (1 + exp((-8 [mV] - V) / 7.5 [mV]))
dot(f1) = (f_inf - f1) / tau_f
f_inf = 1 / (1 + exp((V + 20 [mV]) / 7 [mV]))
tau_f = 1102.5 [ms] * exp(-(V + 27 [mV])^2 / 225 [mV^2]) + 200 [ms] / (1 + exp((13 [mV] - V) / 10 [mV])) + 180 [ms] / (1 + exp((V + 30 [mV]) / 10 [mV])) + 20 [ms]
in [ms]
dot(f2) = (f2_inf - f2) / tau_f2
f2_inf = 0.67 / (1 + exp((V + 35 [mV]) / 7 [mV])) + 0.33
tau_f2 = 562 [ms] * exp(-(V + 27 [mV])^2 / 240 [mV^2]) + 31 [ms] / (1 + exp((25 [mV] - V) / 10 [mV])) + 80 [ms] / (1 + exp((V + 30 [mV]) / 10 [mV]))
in [ms]
dot(fCass) = (fCass_inf - fCass) / tau_fCass
fCass_inf = 0.6 / (1 + (calcium.Ca_ss / 0.05 [mM])^2) + 0.4
tau_fCass = 80 [ms] / (1 + (calcium.Ca_ss / 0.05 [mM])^2) + 2 [ms]
in [ms]
g_CaL = 0.0398 [L/F/s]
in [L/F/s]
i_CaL = if(abs(V - 15 [mV]) < 1e-6 [mV], a * (b - Ca_o) / (2 * FRT), numer / denom)
in [A/F]
a = g_CaL * d * f1 * f2 * fCass * 4 * FFRT
in [1/mM/ms]
b = 0.25 * Ca_ss
in [mM]
numer = a * (V - 15 [mV]) * (b * exp((V - 15 [mV]) * 2 * FRT) - Ca_o)
in [A/F]
denom = (exp(2 * (V - 15 [mV]) * FRT) - 1)
#
# (g) Slow delayed rectifier current, IKs
# Appendix page 2245
# Also called the "slow time-dependent potassium current"
#
[iks]
use membrane.V
dot(Xs) = (inf - Xs) / tau
alpha = 1400 / sqrt(1 + exp((5 [mV] - V) / 6 [mV]))
beta = 1 / (1 + exp((V - 35 [mV]) / 15 [mV]))
tau = 1 [ms] * alpha * beta + 80 [ms]
in [ms]
inf = 1 / (1 + exp((-5 [mV] - V) / 14 [mV]))
g_Ks = 0.2352 [mS/uF]
in [mS/uF]
i_Ks = g_Ks * Xs^2 * (V - nernst.E_Ks)
in [A/F]
#
# (h) Rapid delayed rectifier current, IKr
# Appendix page 2246
# Also called the "rapid time-dependent potassium current"
#
[ikr]
use membrane.V
dot(Xr1) = (xr1_inf - Xr1) / tau_xr1
alpha_xr1 = 450 / (1 + exp((-45 [mV] - V) / 10 [mV]))
beta_xr1 = 6 / (1 + exp((V + 30 [mV]) / 11.5 [mV]))
tau_xr1 = 1 [ms] * alpha_xr1 * beta_xr1
in [ms]
xr1_inf = 1 / (1 + exp((-26 [mV] - V) / 7 [mV]))
dot(Xr2) = (xr2_inf - Xr2) / tau_xr2
alpha_xr2 = 3 / (1 + exp((-60 [mV] - V) / 20 [mV]))
beta_xr2 = 1.12 / (1 + exp((V - 60 [mV]) / 20 [mV]))
tau_xr2 = 1 [ms] * alpha_xr2 * beta_xr2
in [ms]
xr2_inf = 1 / (1 + exp((V + 88 [mV]) / 24 [mV]))
g_Kr = 0.0918 [mS/uF]
in [mS/uF]
label g_Kr
i_Kr = g_Kr * sqrt(extra.K_o / 5.4 [mM]) * Xr1 * Xr2 * (V - nernst.E_K)
in [A/F]
#
# (i) Na/Ca exchange current, INaCa
# Appendix page 2246
#
[inaca]
use membrane.V, phys.FRT
use extra.Na_o, extra.Ca_o
use sodium.Na_i, calcium.Ca_i
alpha = 2.5
gamma = 0.35
K_sat = 0.1
K_NaCa = 1000 [A/F]
in [A/F]
Km_Nai = 87.5 [mM]
in [mM]
Km_Ca = 1.38 [mM]
in [mM]
i_NaCa = K_NaCa * (exp(gamma * V * FRT) * Na_i^3 * Ca_o - exp((gamma - 1) * V * FRT) * Na_o^3 * Ca_i * alpha) / ((Na_o^3 + Km_Nai^3) * (Km_Ca + Ca_o) * (1 + K_sat * exp((gamma - 1) * V * FRT)))
in [A/F]
#
# (j) Na/K pump current, INaK
# Appendix page 2247
#
[inak]
use membrane.V, phys.FRT
use extra.K_o, sodium.Na_i
K_mNa = 40 [mM]
in [mM]
K_mk = 1 [mM]
in [mM]
P_NaK = 2.724 [A/F]
in [A/F]
i_NaK = P_NaK * K_o / (K_o + K_mk) * Na_i / (Na_i + K_mNa) / (1 + 0.1245 * exp(-0.1 * V * FRT) + 0.0353 * exp(-V * FRT))
in [A/F]
#
# (j) Calcium pump current, IpCa
# Appendix page 2247
#
[ipca]
K_pCa = 0.0005 [mM]
in [mM]
g_pCa = 0.1238 [A/F]
in [A/F]
i_p_Ca = g_pCa * calcium.Ca_i / (calcium.Ca_i + K_pCa)
in [A/F]
#
# (j) Potassium pump current, IpK
# Appendix page 2247
#
[ipk]
use membrane.V
g_pK = 0.0146 [mS/uF]
in [mS/uF]
i_p_K = g_pK * (V - nernst.E_K) / (1 + exp((25 [mV] - V) / 5.98 [mV]))
in [A/F]
#
# (k) Sodium background current, IbNa
# Appendix page 2247
#
[ibna]
g_bna = 0.00029 [mS/uF]
in [mS/uF]
i_b_Na = g_bna * (membrane.V - nernst.E_Na)
in [A/F]
#
# (k) Calcium background current, IbCa
# Appendix page 2247
#
[ibca]
g_bca = 0.000592 [mS/uF]
in [mS/uF]
i_b_Ca = g_bca * (membrane.V - nernst.E_Ca)
in [A/F]
#
# (l) Calcium uptake into the SR (SERCA)
#
[iup]
use calcium.Ca_i
Vmax_up = 0.006375 [mM/ms]
in [mM/ms]
K_up = 0.00025 [mM]
in [mM]
i_up = Vmax_up / (1 + K_up^2 / Ca_i^2)
in [mM/ms]
#
# (l) Calcium release from the SR (RyR)
#
[irel]
use calcium.Ca_ss, calcium.Ca_SR
k1_prime = 0.15 [1/mM^2/ms]
in [1/mM^2/ms]
k2_prime = 0.045 [1/mM/ms]
in [1/mM/ms]
kcasr = max_sr - (max_sr - min_sr) / (1 + (EC / Ca_SR)^2)
max_sr = 2.5
min_sr = 1
EC = 1.5 [mM]
in [mM]
k1 = k1_prime / kcasr
in [1/mM^2/ms]
k2 = k2_prime * kcasr
in [1/mM/ms]
k3 = 0.06 [1/ms]
in [1/ms]
k4 = 0.005 [1/ms]
in [1/ms]
dot(R_prime) = -k2 * Ca_ss * R_prime + k4 * (1 - R_prime)
O = k1 * Ca_ss^2 * R_prime / (k3 + k1 * Ca_ss^2)
V_rel = 0.102 [mS/uF]
in [mS/uF]
i_rel = V_rel * O * (Ca_SR - Ca_ss)
in [mM/ms]
#
# (l) Calcium leak from SR
#
[ileak]
use calcium.Ca_SR, calcium.Ca_i
V_leak = 0.00036 [mS/uF]
in [mS/uF]
i_leak = V_leak * (Ca_SR - Ca_i)
in [mM/ms]
#
# (l) Diffusion from SS to Bulk
#
[ixfer]
use calcium.Ca_i, calcium.Ca_ss
V_xfer = 0.0038 [mS/uF]
in [mS/uF]
i_xfer = V_xfer * (Ca_ss - Ca_i)
in [mM/ms]
#
# (l) Calcium dynamics
# Appendix page 2247
#
[calcium]
use membrane.V
use cell.V_c, cell.V_sr, cell.V_ss, cell.Cm
use ileak.i_leak, iup.i_up, irel.i_rel, ixfer.i_xfer
# Buffering constants
Buf_c = 0.2 [mM]
in [mM]
Buf_ss = 0.4 [mM]
in [mM]
Buf_sr = 10 [mM]
in [mM]
K_buf_c = 0.001 [mM]
in [mM]
K_buf_ss = 0.00025 [mM]
in [mM]
K_buf_sr = 0.3 [mM]
in [mM]
# Buffered concentrations
Ca_i_bufc = 1 / (1 + Buf_c * K_buf_c / (Ca_i + K_buf_c)^2)
Ca_ss_bufss = 1 / (1 + Buf_ss * K_buf_ss / (Ca_ss + K_buf_ss)^2)
Ca_sr_bufsr = 1 / (1 + Buf_sr * K_buf_sr / (Ca_SR + K_buf_sr)^2)
# Free calcium in cytosol, SS, and SR
dot(Ca_i) = Ca_i_bufc * ((i_leak - i_up) * V_sr / V_c + i_xfer - ICa_cyt * Cm / (2 * V_c * phys.F))
in [mM]
dot(Ca_ss) = Ca_ss_bufss * (-ical.i_CaL * Cm / (2 * V_ss * phys.F) + i_rel * V_sr / V_ss - i_xfer * V_c / V_ss)
in [mM]
dot(Ca_SR) = Ca_sr_bufsr * (i_up - (i_rel + i_leak))
in [mM]
# Total calcium currents
ICa_cyt = ibca.i_b_Ca + ipca.i_p_Ca - 2 * inaca.i_NaCa
in [A/F]
ICa_tot = ICa_cyt + ical.i_CaL
in [A/F]
#
# (m) Sodium dynamics
# Appendix page 2248
#
[sodium]
INa_tot = ina.i_Na + ibna.i_b_Na + if.i_f_Na + 3 * inak.i_NaK + 3 * inaca.i_NaCa
in [A/F]
dot(Na_i) = -INa_tot / (cell.V_c * phys.F) * cell.Cm
in [mM]
#
# (m) Potassium dynamics
# Appendix page 2248
#
[potassium]
IK_tot = ik1.i_K1 + ito.i_to + if.i_f_K + isus.i_sus + ikr.i_Kr + iks.i_Ks + ipk.i_p_K - 2 * inak.i_NaK
in [A/F]
dot(K_i) = -IK_tot / (cell.V_c * phys.F) * cell.Cm # cell.Cm is not in the appendix!
in [mM]
#
# Physical constants
#
[phys]
R = 8.314472 [J/mol/K]
in [J/mol/K]
T = 310 [K]
in [K]
F = 9.64853414999999950e+01 [C/mmol]
in [C/mmol]
RTF = R * T / F
in [mV]
FRT = F / R / T
in [1/mV]
FFRT = F * FRT
in [C/mmol/mV]
#
# Cell geometry
#
[cell]
Cm = 185 [pF]
in [pF]
desc: Cell capacitance
V_c = 16404 [um^3]
in [um^3]
desc: Bulk cytoplasm volume
V_ss = 54.68 [um^3]
in [um^3]
desc: Dyadic (junctional) subspace volume
V_sr = 1094 [um^3]
in [um^3]
desc: Sarcoplasmic reticulum volume
#
# Extracellular concentrations
#
[extra]
K_o = 5.4 [mM]
in [mM]
Na_o = 140 [mM]
in [mM]
Ca_o = 2 [mM]
in [mM]
#
# Reversal potentials
#
[nernst]
use extra.K_o, extra.Na_o, extra.Ca_o
use potassium.K_i, sodium.Na_i, calcium.Ca_i
E_Ca = 0.5 * phys.RTF * log(Ca_o / Ca_i)
in [mV]
E_K = phys.RTF * log(K_o / K_i)
in [mV]
E_Ks = phys.RTF * log((K_o + P_kna * Na_o) / (K_i + P_kna * Na_i))
in [mV]
E_Na = phys.RTF * log(Na_o / Na_i)
in [mV]
P_kna = 0.03
[[protocol]]
# Level Start Length Period Multiplier
1 50 0.5 1000 0
[[script]]
import matplotlib.pyplot as plt
import myokit
# Get model and protocol, create simulation
m = get_model()
#p = get_protocol()
s = myokit.Simulation(m)
# Run simulation
d = s.run(3000)
# Display the result
plt.figure()
plt.xlabel('Time (ms)')
plt.ylabel('Membrane potential (mV)')
plt.plot(d['engine.time'], d['membrane.V'])
plt.show()