-
Notifications
You must be signed in to change notification settings - Fork 241
/
derive_cubic.py
45 lines (33 loc) · 926 Bytes
/
derive_cubic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import matplotlib.pyplot as plt
import numpy as np
import sympy
# create a bunch of symbols
a, b, c, d, x, alpha, beta = sympy.symbols('a b c d x alpha beta')
# create a polynomial function f(x)
f = a*x**3 + b*x**2 + c*x + d
# get its derivative f'(x)
fp = f.diff(x)
# evaluate both at x=0 and x=1
f0 = f.subs(x, 0)
f1 = f.subs(x, 1)
fp0 = fp.subs(x, 0)
fp1 = fp.subs(x, 1)
# we want a, b, c, d such that the following conditions hold:
#
# f(0) = 0
# f(1) = 0
# f'(0) = alpha
# f'(1) = beta
S = sympy.solve([f0, f1, fp0-alpha, fp1-beta], [a, b, c, d])
# print the analytic solution and plot a graphical example
coeffs = []
num_alpha = 0.3
num_beta = 0.03
for key in [a, b, c, d]:
print key, '=', S[key]
coeffs.append(S[key].subs(dict(alpha=num_alpha,
beta=num_beta)))
xvals = np.linspace(0, 1, 101)
yvals = np.polyval(coeffs, xvals)
plt.plot(xvals, yvals)
plt.show()