SKLearnForQlik Log: Wed Nov 6 09:32:01 2019 Model Name: HR-Attrition-RF-GSCV Execution arguments: {'overwrite': True, 'test_size': 0.3, 'cv': 3, 'time_series_split': 0, 'max_train_size': None, 'lags': None, 'lag_target': False, 'scale_target': False, 'make_stationary': None, 'random_state': 42, 'compress': 3, 'retain_data': False, 'calculate_importances': True, 'debug': True} Scaler: StandardScaler, missing: zeros, scale_hashed: True, scale_vectors: True Scaler kwargs: {'with_mean': True, 'with_std': True} Estimator: RandomForestRegressor Estimator kwargs: {} Cache updated. Models in cache: ['HR-Attrition-RF-GSCV'] TABLE DESCRIPTION SENT TO QLIK: fields { name: "model_name" } fields { name: "result" } fields { name: "timestamp" } name: "SSE-Response" numberOfRows: 1 RESPONSE: (1, 3) rows x cols Sample Data: model_name result time_stamp 0 HR-Attrition-RF-GSCV Model successfully saved to disk 09:32:01 11/06/19 Hora estándar romance ... model_name result time_stamp 0 HR-Attrition-RF-GSCV Model successfully saved to disk 09:32:01 11/06/19 Hora estándar romance