Compilers: Backend to Frontend
and Back to Front Again

Abdulaziz Ghuloum

September 17, 2006

Inside Cover

11

Inside Title Page

111

Copyright Page

iv

Preface

Compilers are percieved to be magical artifacts, carefully crafted by the
wizards, and unfathomable by the mere mortals. This paper attempts to
dispel this myth. We build a simple compiler for a simple language in a
step-by-step fashion. The input language accepted by the compiler starts
minimal, and grows as our knowledge of how to build compilers grows.
The final language is almost Scheme.

Although the compiler is written in the Scheme programming lan-
guage, only minimal knowledge of Scheme is required. Essentially, the
reader is assumed to be comfortable reading and writing recursive Scheme
functions to the level presented in The Little Schemer. Additionally, we rec-
ommend the freely available tutorial Teach Yourself Scheme in Fixnum Days
for people familiar with other programming languages but not Scheme.
The Scheme Programming Language is an invaluable resource for understand-
ing Scheme’s semantics. You will find it most useful when you give up in
thinking how 1ist? detects circular data structures.

Our compiler targets the Intel-386 architecture, the dominant architec-
ture for personal computing. The output of our compiler is assembly code
that can be assembled by gas, the GNU assembler, which is freely avail-
able for most operating systems. No knowledge of assembly language or
the Intel-386 architecture is assumed beyond the basics: binary numbers,
memory layout, and basic pointers. If you are familiar with arrays in C,
and know how the bit-level operations (and, or, xor, and not) work, then
you're good to go.

Enjoy!

vi

Contents

Preface

1

Basic Concepts

1.1 Integers
1.2 ImmediateConstants
1.3 Unary Primitives
14 Conditional Expressions
1.5 Binary Primitives
1.6 Local Variables
1.7 Procedures. e
1.8 TIterationviaProper TailCalls

1.9 Heap Allocation

Tables
A.1 ASCIITable . .
A.2 Object Tags . . .

Vil

viil

Chapter 1

Basic Concepts

in Code Generation [FIXME: Explain what this chapter is all about, what
the reader will encounter, and what will be accomplished by the end.]

2 CHAPTER 1. BASIC CONCEPTS

1.1 Integers

We start our journey by writing the simplest compiler ever. Our compiler
takes a small integer (fixnum) as input and produces a native-code program
that prints that integer. This input language follows the grammar listed in
the following “Input Language” box.

Input Language:

(Expr) — fixnum

A fixnum is an integer than can be represented on the target machine. On
a 32-bit architecture such as the Intel-386, the largest number that can be
represented immediately cannot use more than 32 bits of data. For signed
numbers represented in two’s compliment notation, the range of numbers
that fit in 32-bits is —2°! < n < 2% — 1. Examples of binary representation
of numbers are:

0 = 00---00004 -1=11---1111,
1 =00---0001, -2=11---1110,
2 =00---0010, -3 =11---1101,
3 =00---0011, -4 =11---1100,
4 = 00---0100, -5=11---1011,
231 —1=01---1111, -231 =10---0000,

Now we turn to the implementation. We will write a simple runtime
system in C to serve as a scaffold for debugging our compiler. The C run-
time will execute the assembly code and prints a human-readable output.
Suppose that the entry point to our assembly-code is called scheme_entry.
A simple C program runtime. c (figure 1.4, p. 9) serves our purpose.

We need to test that our runtime actually works before we proceed to
writing our compiler. We test it by writing a scheme_entry function in C.
Here are the contents of the file ctest.c:

int scheme_entry(){
return 7; /* should print 7 */
3

1.1 Integers 3

Let’s test it from the unix command line using the GNU C compiler, gcc:

$ gcc -Wall ctest.c runtime.c -o test
[bunch of warnings]

$./test

7

$

Now that we know that our runtime is at least capable of printing 7,
let’s see how gcc did it. We can get gcc to produce not only the final
executable, but also the intermediate assembly code produced. Let’s try it
and see what comes out:

$ gcc --omit-frame-pointer -S ctest.c
$ cat -n ctest.s | expand -t 4 | sed ’s/ *//’

1 .file "ctest.c"

2 .text

3 .globl scheme_entry

4 .type scheme_entry, @function

5 scheme_entry:

6 movl $7, %eax

7 ret

8 .size scheme_entry, .-scheme_entry

The meaning of each like is as follows: Line 1 lists the source file name.
Line 2 starts the text section. We won’t get into what this means now
except to say that this is a segment in memory where the compiled code
will reside when loaded. Line 3 says that the label scheme_entry should
be considered a global label, and should be included in the symbol table so
that the linker/loader can find it. Line 4 gives a type to the label: @function
in this case. Line 5 is the label of the entry point to our function. Line 6
loads the value of the constant 7 into the register %eax The register %eax
serves as the return value register. Line 7 causes execution to return from
the function thus the caller now has the value 7 as the result of calling the
function. Line 8 records the size of the function. We note that the lines 1
and 8 are optional.

The only character that was actually interesting in the whole file was 7.
The rest can be treated as boilerplate code by our compiler. All we have
to do is write a program that when given a fixnum value as input, it will
print out this output after filling out the number.

4 CHAPTER 1. BASIC CONCEPTS

To facilitate automated testing of our first compiler and runtime, we
include a test-driver.scm file and a test suite of some input programs
along with their expected output. Our compiler is a function emit-program
of one argument: the input program. All it has to do is print the assembly-
code similar to the one listed above. In order to direct the output of the
compiler to the appropriate file, the function emit that is supplied by the
driver must be used for printing. Our incomplete attempt is listed in
tigure 1.3, p. 8. The test suite provided attempts to target common pitfals
and corner cases. It is by no means comprehensive. The reader is urged
to extend the test-suite regularly by writing tests that specifically target
areas of weaknesses in the compiler. Running the tests should produce the
following to assure us that all is correct:

> (test-all)

Performing immediates tests

N N N I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0)

[1/10]: ® ... ok

[10/10]: -536870912 ... ok
Passed all 10 tests

Exercises

1. Ensure that the compiler listed in figure 1.1, p. 5 and the C runtime
work on your computer. Make sure your compiler passes all the tests
provided in the file tests-1.1-req.scm. It's a good idea to weed out
any warnings gcc may emit.

1.1 Integers

(load "test-driver.scm")
(load "tests-1.1-req.scm™)

(define (emit-program x)

(unless (integer? x) (error ---))
(emit " .text™)
(emit " .globl scheme_entry")

(emit .type scheme_entry, @function")
(emit "scheme_entry:")

(emit " movl $~s, %eax" x)

(emit " ret"))

Figure 1.1: Compiler for integers.

#include <stdio.h>

int main(int argc, char** argv){
printf("%d\n", scheme_entry());
return 0;

}

Figure 1.2: Runtime system for the integers compiler.

6 CHAPTER 1. BASIC CONCEPTS

1.2 Immediate Constants

Our next compiler extends the first compiler by adding a variety of im-
mediate values. A valid input to our compiler is either a small integer
(fixnum), a boolean value (#t or #f), a character (#\A, #\7, etc.), or the
empty list () as listed in the following language:

Input Language:

(Expr) — fixnum | boolean | char | null

Because the output of the compiler must print the final value, it must
have a way of distinguishing the fixnums from the other immediates. There
are many techniques for representing the type of objects at runtime. One
technique that we use is called the “tagged pointer representation.” A
value in this representation is divided into two parts: tag and content. The
tag represents the type of the objects, and the content represents its value.
We choose the following convention for our tags:

e Fixnums always have #b00 in the two least-significant bits. The
most-significant 30-bits represent the actual value of the fixnum.

e All other immediates have #b1111 in the four least-significant bits.

e The other unused tags will be used at later parts of the compiler to
represent pairs, vectors, strings, symbols, etc.

Reserving two bits for the fixnum tag limits the range of numbers that
can be represented by a fixnum. With 30-bits of data, our range becomes
-2 < n < 2% -1 or 536870912 < n < 536870911. We accept this
limitation for our first compiler and fix it at later time, when we get around
to implementing arbitrary-precision arithmetic.

The boolean values #f and #t will be represented as the boolean num-
bers 00101111, and 01101111,. We have chosen two numbers that differ
by one bit only to make distinguishing booleans from other objects easy.
An object can be masked with 10111111, to determine if these bits are
00101111,.

Characters can be represented using immediate values by using two
bytes: one byte to represent the tag (00001111,) of a character and another

1.2 Immediate Constants 7

byte to represent its value. For example, the character #\A has the ASCII
value 65. Therefore, it is represented as an immediate by first shifting the
number 65 eight bits to the left, then tagging it with the tag value 15 to
produce 16655

Scheme’s empty-list object (a.k.a. (), nil, null) can be represented by
the value 00111111,

Exercises

1. Complete the C runtime and the Scheme compiler. Make sure your
compiler passes all the tests provided in the file tests-1.2-req.scm.
It’s a good idea to weed out any warnings gcc may emit.

Most implementations of Scheme use the ASCII numerics for their characters. Check
your implementation’s manual to see if the function char->integer provides the actual
ASCII value of a character.

CHAPTER 1. BASIC CONCEPTS

(load "test-driver.scm")
(load "tests-1.2-req.scm")
(load "tests-1.1-req.scm™)

(define
(define
(define
(define
(define
(define
(define
(define

(define

fxshift 2)

fxmask #x03)

bool_f #x2F)

bool_t #x6F)

wordsize 4) ; bytes

fixnum-bits (- (* wordsize 8) fxshift)

fxlower (- (expt 2 (- fixnum-bits 1))))
fxupper (subl (expt 2 (- fixnum-bits 1))))

(fixnum? x)

(and (integer? x) (exact? x) (<= fxlower x fxupper)))

(define (immediate? x)
(or (fixnum? x) (boolean? x) ---))
(define (immediate-rep x)
(cond
[(fixnum? x) (ash x fxshift)]
)
(define (emit-program x)
(unless (immediate? x) (error ---))
(emit " .text")
(emit " .globl scheme_entry")
(emit " .type scheme_entry, @function")
(emit "scheme_entry:")
(emit " movl $~s, %eax" (immediate-rep x))
(emit " ret"))

Figure 1.3: Compiler for immediate constants.

1.2 Immediate Constants

#include <stdio.h>

/* define all scheme constants */

#define bool_f 0x2F
#define bool_t 0x6F
#define fx_mask 0x03
#define fx_tag 0x00
#define fx_shift 2

/% all scheme values are of type ptrs
typedef unsigned int ptr;

static void print_ptr(ptr x){
if((x & fx_mask) == fx_tag){
printf("%d", ((int)x) >> fx_shift);
} else if(x == bool_£){
printf("#£");
3

} else {
printf("#<unknown 0x%08x>", X);
}
printf("\n");
}

int main(int argc, char** argv){
print_ptr(scheme_entry());
return 0;

}

-k/

Figure 1.4: A simple runtime.c file is used to run the assembly code
generated by our compiler and print out the value returned.

10 CHAPTER 1. BASIC CONCEPTS

1.3 Unary Primitives

The compiler we’ve written so far accepts a language composed of imme-
diate constants only. Hopefully you have completed the exercises at the
end of section 1.2 and your compiler can compile fixnums, booleans, null,
and characters to assembly code. Now we turn our attention to extending
the language to include some unary primitives. Unary primitives are those
that accept one argument. The input language to our compiler is now:

Input Language:

(Expr) — (Imm)
| (prim (Expr))
(Imm) — fixnum | boolean | char | null

Some of the unary primitives we need to support are: fxaddl, fxsubl,
char->fixnum, fixnum->char, fxzero?, null?, not, fixnum?, boolean?,
and char?.

Since there are many different primitives that we have to deal with
now and many more that we will deal with later on, it makes sense to
use some abstractions that simplify our code. First, we recognize that the
language we are accepting is growing. So, we need to deal with the types
of expressions that we deal with in a modular fashion. Instead of writing
one function emit-programlike we did in section 1.2, we break the function
into two parts: one that emits the code for an arbitrary expression, and
one that inserts the function stub around it. The following implementation
of emit-program calls emit-expr which produces the code resposible for
placing the result in the return-value register %eax.

For every case in our input language we place a corresponding case
in the emit-expr function. Two cases are listed in the code: one for
immediates and one for primitive calls. The immediate case is similar to
the one from the section 1.2. The primitive call case first checks that the
number of arguments passed to the primitive is correct before emitting the
code for the primitive call.

The information associated with every primitive must be stored some-
where in the compiler. Given a name, we might want to ask the following
questions about it: (1) Is it a primitive? (2) How many arguments does it
take? and (3) What procedure handles emitting the code for the primitive?

1.3 Unary Primitives 11

In the compiler listed in figure 1.5, p. 14, we chose to store this information
in the property list of the symbol denoting the primitive. The three prop-
erties *is-prim*, *arg-count*, and *emitter* answer the three previous
questions. Other ways of storing the information are possible including as-
sociation lists, hash tables, etc. Using property lists is perhaps the simplest
and most efficient representation for our purpose.

Our compiler infrastructure is almost complete. Its code is listed in
figure 1.5, p. 14. We are now ready to tackle the problem of implement-
ing the primitives of our language. The first primitive that we tackle is
fxaddl. The primitive fxaddl takes one argument, which must evaluate
to a fixnum, and returns that value incremented by 1. The implemen-
tation of fxadd1 should first emit the code for evaluating the argument.
Evaluating that code at runtime would place the value of the argument at
the return-value register %eax. The value placed in %eax should therefore
be incremented and the new computed value should be placed back in
%eax. Remember though that all the fixnums in our system are shifted to
the left by two. So, a fxadd1 instruction translates to an instruction that
increments %eax by 4. To add this primitive to our compiler, we use the
define-primitive syntactic form as follows:

(define-primitive (fxaddl arg)
(emit-expr arg)
(emit " addl $~s, %eax" (immediate-rep 1)))

The machine instruction addl in this usage takes a constant value and a
register and increments the value of that register by that constant value.

The implementation of the primitive char->fixnum should evaluate
its argument, which must evaluate to a character, then convert the value
to the appropriate fixnum. Since we defined the tag for characters to be
00001111 and the tag for fixnums to be 00, it suffices to shift the character
value to the right by six bits to obtain the fixnum value. The primitive
fixnum->char should shift the fixnum value to the left, then tag the result
with the character tag. Tagging a value is performed using the instruction
orl. The code for implementing the primitive fixnum->char follows:

12 CHAPTER 1. BASIC CONCEPTS

(define-primitive (fixnum->char arg)
(emit-expr arg)
(emit " shll $~s, %eax" (- charshift fxshift))
(emit " orl $~s, %eax" chartag))

All the primitives so far were implemented using simple arithmetic and
bit-twiddling operations. Implementing predicates such as fixnum? is not
as simple. First, after the argument to fixnum? is evaluated, the lower two
bits of the result must be extracted and compared to the fixnum tag 00;.
If the comparison succeeds, we return the true value, otherwise we return
the false value. Extracting the lower bits using the fixnum mask is done
using the bitwise-and instructions and/and1?. The result is compared with
the fixnum tag using the cmp/cmpl instruction. The Intel-386 architecture
provides many instructions for conditionally setting the lower half of a
register by either a 1 or a 0 depedning on the relation of the objects involved
in the comparison. One such instruction is sete which sets the argument
register to 1 if the two compared numbers were equal and to 0 otherwise.
A small glitch here is that the sete instruction only sets a 16-bit register. To
work around this problem, we use the movzbl instruction that sign-extends
the lower half of the register to the upper half. Since both 0 and 1 have
0 as their sign bit, the result of the extension is that the upper bits will
be all zeros. Finally, the result of the comparison is shifted to the left by
an appropriate number of bits and or’ed with the false value 00101111, to
obtain either the false value or the true value 01101111,.

(define-primitive (fixnum? arg)
(emit-expr arg)

(emit " and $~s, %al" fxmask)
(emit " cnp $~s, %al" fxtag)
(emit " sete %al"™)

(emit " movzbl %al, %eax")
(emit " sal $~s, %al" bool-bit)

(emit " or $~s, %al" bool-1))

Instructions prefixed with the letter 1 operate on 32-bit values while the instructions
lacking the letter 1 operate on 16-bit values.

1.3 Unary Primitives 13

The remaining predicates can be implemented by following the previ-
ous examples.

Exercises

1. Finish the implementation of the compiler code presented in fig-
ure 1.5, p. 14.

2. Add all the missing primitives: fxsubl, fixnum->char, null?, not,
boolean?, and char?. The primitive not takes any kind of value and
returns #t if the object is #£, otherwise it returns #£f. Make sure your
compiler passes all the tests in tests-1.3-req.scm.

3. Implement the primitive fxlognot which takes a fixnum value and
returns a fixnum with all the bits flipped. Pay special attention to
preserving the 00, tag for the resulting fixnum. Add the appropriate
test cases.

14 CHAPTER 1. BASIC CONCEPTS

(define-syntax define-primitive
(syntax-rules
[(_ (prim-name arg* ...) b b* ...)
(begin
(putprop ’prim-name ’*is-prim* #t)
(putprop ’prim-name ’*arg-count*®
(length ’(arg* ...)))
(putprop ’prim-name ’'*emitter®
(lambda (arg® ...) b b* ...)))1))

(define (primitive? x)
(and (symbol? x) (getprop x ’*is-prim*)))

(define (primitive-emitter x)
(or (getprop x ’'*emitter*) (error ---)))

(define (primcall? expr)
(and (pair? expr) (primitive? (car expr))))

(define (emit-primcall expr)
(let ([prim (car expr)] [args (cdr expr)])
(check-primcall-args prim args)
(apply (primitive-emitter prim) args)))

(define (emit-expr expr)
(cond
[(immediate? expr) (emit-immediate expr)]
[(primcall? expr) (emit-primcall expr)]
[else (error ---)]1))

(define (emit-program expr)
(emit-function-header "scheme_entry'")
(emit-expr expr)

(emit " ret"))

Figure 1.5: Compiler framework for modular primitives

1.4 Conditional Expressions 15

1.4 Conditional Expressions

The next extension to the language is to add conditional expressions. A
conditional expression is a three-part if expression. The first part is the
test, and is evaluated first. If the value of the test is not #f, then the
second part, the consequent branch, is evaluated and its value is returned.
Otherwise, the third part, the alternate branch, is executed. The input
language to our next compiler is as follows:

Input Language:

(Expr) — (Imm)
| (if (Expr) (Expr) (Expr))
| (prim (Expr))
(Imm) — fixnum | boolean | char | null

In order to perform conditional execution, we need a way of telling the
machine what piece of code needs to be executed. Labels are used to mark
the targets of jump instructions. We have already seen one label in our
previous compiler: the scheme_entry label. To create more labels that are
all unique, we use the simplest scheme. All local labels would have the
form L_0, L_1, etc.. We define the procedure unique-label which returns
a new label (a string) everytime it is called.

(define unique-label
(let ([count 0])
(lambda O
(let ([L (format "L_~s" count)])
(set! count (addl count))
L))))

To emit the code for the form (if test conseq altern), first we emit
the code for evaluating the test. Evaluating the test would place some
value in the %eax register. We compare that value to the value of #£, and
if they’re equal, we jump to some label, alt-label, where the code for
the altern branch is placed. If the value of %eax is not #£, then we let
the execution proceed to the code of the conseq branch. When the conseq

16 CHAPTER 1. BASIC CONCEPTS

branch finally finishes, the execution must skip over the code of the altern
branch to the join point (end-1label).

The first change to our compiler is to make it recognize the if as a
new form. We modify the function emit-expr to allow it to handle if
expressions as follows:

(define (emit-expr expr)
(cond
[(immediate? expr) (emit-immediate expr)]
[(if? expr) (emit-if expr)]
[(primcall? expr) (emit-primcall expr)]
[else (error ---)1))

Next, we implement the procedure that handles the if form as follows:

(define (emit-if expr)
(let ([alt-label (unique-label)]
[end-1abel (unique-label)])

(emit-expr (if-test expr))
(emit " cmp $~s, %al" bool-f)
(emit " je ~a" alt-label)
(emit-expr (if-conseq expr))
(emit " jmp ~a" end-label)
(emit "~a:" alt-label)
(emit-expr (if-altern expr))
(emit "~a:" end-label)))

The new machine instructions introduced by this code are (1) je, which
performs a jump if the two compared values are equal, and (2) jmp, which
performs an unconditional jump.

Exercises

1. Complete the missing functionality from your compiler and ensure
that it passes all the tests in tests-1.4-req.scm.

1.4 Conditional Expressions 17

2. In addition to the if construct that was just added to our language,
many languages provide other forms of conditional expressions. The
Scheme form (and test* ...) is often implemented as a syntactic
transformer as follows:

(define-syntax and
(syntax-rules ()

[(and) #t]
[(and test) test]
[(and test test* ...)

(if test (and test* ...) #£)]))

Add support to the and form to your compiler. Once and is working,
implement the (or test* ...) form.

3. Our basic treatment of conditional expressions is correct but ineffi-
cient in many cases. For example, (if (fxzero? e0®) el e2) per-
forms two comparisons: one compares the value of e0 to the constant
0 and builds the appropriate boolean value. The other compares the
resulting boolean value to #£ to dispatch the appropriate branch. The
reason for this inefficiency is that we treated predicates as value prim-
itives even though we were not interested in obtaining the boolean
value. How would you modify your compiler to minimize the num-
ber of comparisons performed?

18 CHAPTER 1. BASIC CONCEPTS

1.5 Binary Primitives

So far, all of the constructs of the language we compile were simple enough
that we actually only needed one register, %eax, to evaluate them. In this
section, the input language becomes more interesting by including binary
primitives. Binary primitives take not one but two arguments. Here is
what our new language looks like:

Input Language:

(Expr) — (Imm)

| (if (Expr) (Expr) (Expr))

| (prim (Expr))

| (prim (Expr) (Expr))
(Imm) — fixnum | boolean | char | null

Some of the binary primitives we need to support at this stage are: £x+,
fx-, fxlogand, fxlogor, fx=, fx<, £x<=, £x>, £x>=, char=, char<, char<=,
char>, and char>=.

Suppose we would like to compile the following program:

(fx+ (fx- (£fx- 30 3) 3) (fx- 6 5))

In compiling the call to the primitive fx+, we can choose to emit the code
for the left subexpression, which we hope will compute the value 24 and
place it in the %eax register. We are stuck now since evaluating the right
subexpression will overwrite the value in %eax by the value 1. What
we need is a way to save the value of the first computation somewhere,
evaluate the second computation, then use the saved value to compute the
final result.

We use the stack data structure (figure 1.6, p. 19) to hold the intermediate
values of computations. The stack is an array of adjacent memory cells.
Each cell in the stack holds one value. We dedicate one of the machine’s
general purpose registers, %esp, to hold a pointer to base of the stack. The
cell at the base of the stack holds a value, called the return point. We won'’t
have to deal with it until section 1.7. We just mention it here so that you
don’t accidentally overwrite it. So, the first available cell is located one
machine word (4 bytes) above the base of the stack. We assume that the

1.5 Binary Primitives 19

low address

\
free .
stack .
space \
/\ tmp5 %esp-20
u Se_d tmp4 %esp-16
poOFI" ttlhoen tmp3 %esp-12
stack tmp2 %esp-8
\/ tmpl %esp-4
base —> | return point %esp

high address

Figure 1.6: Illustration of the stack data structure. The base of the stack is
held constant in the %esp register. Individual values that are saved on the
stack are accessed by their relative offset from the base of the stack.

stack is large enough to hold all intermediate values. The issue of stack
overflow is saved for later parts of the tutorial.

To implement binary primitives in our compiler, we need to make a few
changes. All of the functions that emit code need to be modified to take
an extra argument: the stack index. This index is a non-negative integer
that tells us how much of the stack is used and thus cannot be modified.
Therefore, everytime we need to save a new value, we would know at
which offset the value can be saved without clobbering any other saved
values. The index is moved before we emit code for the other subexpression
to ensure that its evaluation won’t clobber our saved value.

Notice that the stack base pointer, %esp, is held at a static position at
runtime. The stack index is the dynamic value that changes at compile time
to allocate and deallocate space on the stack. Therefore, stack allocation is
achieved by simple bookkeeping at compile-time (figure 1.7, p. 22).

20 CHAPTER 1. BASIC CONCEPTS

Now let’s see how the primitive fx+ is actually implemented. The
primitive is defined to take three arguments: the stack index, and the two
operands to fx+. It evaluates one of the operands, saves its value, evaluates
the second operand (with a decremented index), then adds the saved value
to the result of the second operand.

(define-primitive (fx+ si argl arg2)
(emit-expr sc argl)
(emit " movl %eax, ~s(%esp)" si)
(emit-expr (- si wordsize) arg2)
(emit " addl ~s(%esp), %eax" si))

Handling primitives of higher arities is not different from handling
binary primitives. The first argument is evaluated and saved in a stack
location; the si is moved to preserve the argument; and the process con-
tinues for all arguments. Once all arguments are evaluated, we can access
their values by the indices at which they were saved.

Creating the stack

The discussion of stacks so far assumed that the base of the stack was in the
%esp register. Now we show the changes we need to make to our C runtime
and our compiler to properly initialize the value of the %esp register.

From the C side, we need to allocate a sufficiently large area of memory
to serve as our stack. The code in figure 1.8, p. 23 illustrates the basic idea.
The procedure allocated_protected_space allocates a block of memory
surrounded by two protected pages. These protected pages aid us by
crashing the program early should it try to access the memory locations
immediately below or above the stack. A pointer to the base of the stack is
passed to the scheme_entry procedure.

At the scheme_entry side, our stack base argument will be located at
%esp+8 (C uses %esp as a stack pointer that moves dynamically as you
add and remove things to it). So, the first thing we need to do is save the
value of the C stack pointer into one of the scratch registers: %ecx. We
then call a label that will perform the actual computation. Once execution
returns, we restore the C stack pointer back from %ecx then return to the

main procedure. Here is how our assembly code for scheme_entry should
look like:

1.5 Binary Primitives 21

scheme_entry:
movl %esp, %ecx
movl 4(%esp), %esp
call L_scheme_entry
movl %ecx, %esp
ret

Exercises

1. Modify your startup.c file so that the main procedure allocates a
stack and passes it to scheme_entry as described in this section. Also,
modify your compiler so that it outputs the modified scheme_entry
code. Make sure that your compiler still works on all of the previous
tests.

2. Implement all the binary primitives listed at page 18. Make sure your
compiler passes all the tests in tests-1.5-req.scm.

3. Implement the primitive fx*. Remember that all our numbers are
scaled by 4 and that the result of the multiplication should also be
scaled by 4. Which of the following two equations would you use?

_ (4x-4y)

4xy 1

iy () 4

Make sure you add enough tests to ensure that your implementation
of £x* is correct. Add a test that makes one of the two equations fail
and the other succeeds.

4. In our implementation of fx+, we saved the value of the first operand
before evaluating the second operand. However, in many cases, one
of the operands may be a constant. If one of the arguments is a
constant, we can evaluate the other argument first, then add its value
to the constant operand. Think about how you would go about
implementing such optimization.

22 CHAPTER 1. BASIC CONCEPTS

(define-syntax define-primitive
(syntax-rules (O
[(_ (prim-name si arg®* ...) b b* ...)
(begin
(putprop ’prim-name ’*is-prim* #t)
(putprop ’'prim-name ’*arg-count®
(length ’(arg* ...)))
(putprop ’prim-name ’'*emitter®
(lambda (si arg® ...) b b* ...)))1))

(define (emit-primcall si expr)
(let ((prim (car expr)) (args (cdr expr)))
(check-primcall-args prim args)
(apply (primitive-emitter prim) si args)))

(define (emit-expr si expr)

(cond
[(immediate? expr) (emit-immediate expr)]
[(if? expr) (emit-if si expr)]

[(primcall? expr) (emit-primcall si expr)]
[else (error ---)1))

(define (emit-program expr)
(emit-function-header "L_scheme_entry")
(emit-expr (- word-size) expr)

(emit " ret")
(emit-function-header "scheme_entry'")

(emit " movl %esp, %ecx")
(emit " movl 4(%esp), %esp")
(emit " call L_scheme_entry")
(emit " movl %ecx, %esp")
(emit " ret"))

Figure 1.7: Compiler framework for modular primitives. The compiler
keeps tracks of passing the stack index, si, to all the primitive emitters.

1.5 Binary Primitives 23

static char* allocate_protected_space(int size){
int page = getpagesize();
int status;
int aligned_size = ((size + page - 1) / page) * page;
char* p = mmap(0, aligned_size + 2 * page,
PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE,

0, 0;
if (p == MAP_FAILED){ --- }
status = mprotect(p, page, PROT_NONE);
if(status !'=){ --- }

status = mprotect(p + page + aligned_size, page, PROT_NONE);
if(status != ®{ --- }
return (p + page);

static void deallocate_protected_space(char* p, int size){
int page = getpagesize();
int status;
int aligned_size = ((size + page - 1) / page) * page;
status = munmap(p - page, aligned_size + 2 * page);
if(status !'=){ --- }

}

int main(int argc, char** argv){
int stack_size = (16 * 4096); /* holds 16K cells */
char* stack_top = allocate_protected_space(stack_size);
char* stack_base = stack_top + stack_size;
print_ptr(scheme_entry(stack_base));
deallocate_protected_space(stack_top, stack_size);
return 0;

Figure 1.8: The new runtime system creates a stack surrounded by two
protected pages to guard against stack overflow and underflow.

24 CHAPTER 1. BASIC CONCEPTS

1.6 Local Variables

Now that we know how to use the stack to save intermediate values of
a computation, we can generalize the concept by giving names to these
intermediate values. We extend the language of our compiler once more
by adding two new syntactic forms: the binding construct let and variable
references. The ellipsis “...” in the grammar below denote repetition.
Whenever the form ‘x ...” appears, it means that zero or more of x are
accepted. Itis equivalent to the Kleene-star construct of regular languages.

Input Language:

(Expr) — (Imm)
| var
| (if (Expr) (Expr) (Expr))
| (let ([var (Expr)] ...) (Expr))
| (prim (Expr) ...)
(Imm) — fixnum | boolean | char | null

The construct let consists of a list of bindings ([var (Expr)] ...)
and a body expression. Evaluating a let expression starts with evaluating
every expression appearing on the right-hand-side of the bindings list.
Once these expressions are evaluated, the variables on the left-hand-side
are bound to their corresponding values. The variables bound by a let
become visible in the body of the 1et only. They are not visible in the right-
hand-side expressions since the binding of the variables happens only after
all the right-hand-side expressions are evaluated.

In order to implement let in our compiler, we need to maintain an envi-
ronment that maps local variables to the location in which their values are
saved. Because all our variables are saved on the stack, our environment
maps every variable to its stack index. Among possible representations for
the environment, we will utilize association lists (alists for short) because
of their simplicity.

Again, we need to make a few changed to our compiler. Just like we
added the stack index as an extra argument to all of our procedures, we
now need to add an environment. We also need to add the extra clauses
for let and var to our emit-expr procedure.

1.6 Local Variables 25

(define (emit-expr si env expr)
(cond
[(immediate? expr) (emit-immediate expr)]
[(variable? expr) (emit-variable-ref env expr)]
[(if? expr) (emit-if si env expr)]
[(1et? expr) (emit-let si env expr)]
[(primcall? expr) (emit-primcall si env expr)]
[else (error ---)1))

The procedure emit-let takes a let expression and emits the code
for evaluating all the right-hand-sides of the bindings, saving the values,
extending the environment, and processing the body in the new environ-
ment. The value of the let expression is the value returned by the body
of the let. Below is the code for emit-let. Notice that as we progress
in writing the compiler, we use more abstractions to make the code more
readable and less dependent on the representation.

(define (emit-let si env expr)
(define (process-let bindings si new-env)
(cond
[(empty? bindings)
(emit-expr si new-env (let-body expr))]
[else
(let ([b (first bindings)])
(emit-expr si env (rhs b))
(emit-stack-save si)
(process-let (rest bindings)
(next-stack-index si)
(extend-env (lhs b) si new-env)))]))
(process-let (let-bindings expr) si env))

Variables are easy to handle now. When we need to emit the code for a
variable reference, all we have to do is lookup that variable’s stack index
in the environment and emit a load from that location.

26 CHAPTER 1. BASIC CONCEPTS
(define (emit-variable-ref env var)
(cond
[(lookup var env) => emit-stack-load]
[else (error ---)]))
Exercises

1. Finish the implementation of let. Make sure your compiler passes

the tests in tests-1.6-req.scm.

. The Scheme standard does not specify the order of evaluation for the

right-hand-side expressions of a let. The standard provides another
binding form, let*, that evaluates all of its bindings sequentially
and makes the bound variables available in all subsequent bindings
in addition to the body of the 1et*. For example, the on the left below
evaluates to 2 since the x in the inner let refers to the x bound by the
outer let. The example on the right evaluates to 3 since the x in the
right-hand-side of y is the x bound by the inner let*.

(let ([x 11) (Aet* ([x 11)
(let ([x (£fx+ x 1] (let* ([x (fx+ x 1]
[y (£x+ x 1D1) [y (£x+ x 1D1)
y)) y))

Add support for let* to your compiler and test it using the file
tests-1.6-opt.scm.

1.7 Procedures 27

1.7 Procedures

The compilers we have written up to the last section are a little more than
a calculator. Every program they compiled was simple enough that we
could have computed the result at compile time and replaced the program
by its answer. Real programming languages have procedures. Procedures
allow the programmer to abstract common computations into reusable
components that are applied many times with different arguments. In this
section, we extend our language by adding procedure declarations and
procedure calls as shown in the grammar below.

Input Language:

(Program) — (Expr)
| (letrec ([lIvar (Lambda)] ...) (Expr))
(Lambda) — (lambda (var ...) (Expr))
(Expr) — (Imm)
| var
| (if (Expr) (Expr) (Expr))
| (let ([var (Expr)] ...) (Expr))
| (app lvar (Expr) ...)
| (prim (Expr) ...)
(Imm) — fixnum | boolean | char | null

The language now contains an optional top-level letrec form which
serves as a declaration for procedure names. The letrec form is similar in
structure to the let form with the restriction that all the right-hand-sides
of the bindings must be procedures. These procedures are created with
the lambda form that includes the formal arguments and the body of the
procedure.

The language also contain a app form. The first operand to a app
is a variable which must be a name of a procedure bound by the top-
level letrec. The other arguments are ordinary expressions, which must
be evaluated first to obtain their values. We call these values the actual
arguments. The procedure call binds the procedure’s formal arguments to
the the actual arguments with which the procedure was called. Once the
execution of the body of the procedure is done, execution returns to the app
that invoked the procedure, and the value of the app becomes the value of
the body of the procedure.

28 CHAPTER 1. BASIC CONCEPTS
low address low address
free free
stack stack
space space
) arg3 %esp-28)) A arg3 %esp-12
outgoing arg2 %esp-24 incoming arg? %esp-8
arguments arguments
argl %esp-20 argl %esp-4
%esp-16 base ——>»| return point %esp
local3 %esp-12
locals local2 %esp-8
locall %esp-4
base > return point %esp
high address high address
(A) Caller’s View (B) Callee’s View

Figure 1.9: The view of the stack from (A) the Caller’s side right before
making the call, and (B) the Callee’s side on entry to the procedure.

The caller and the callee must agree on where the parameters will be
placed. To simplify matters, we choose to pass all arguments on the stack.
The caller evaluates all of its arguments and saves them sequentially on the
stack, leaving one cell empty for the return point (figure 1.9 above). The
caller then adjusts the base pointer to make sure that the callee receives the
base pointer adjusted to its base. Once the procedure returns, the caller
moves the base pointer back to where it was before making the call. Two
machine instructions are used for making procedure calls: call and ret:

e The call instruction performs the following: (1) computes the return
point (i.e. the address of the instruction following the call instruc-
tion), (2) decrements the value of %esp by 4, (3) saves the return point
at 0 (%esp), then (4) directs the execution to the target of the call.

e The ret instruction performs the following: (1) it loads the return
point address from 0 (%esp), (2) increments the value of %esp by 4,

then (3) directs the execution to the return point.

Now we show how to emit code for letrec, lambda, and app forms.

1.7 Procedures 29

First, processing the (letrec ([lvar (Lambda)] ...) (Expr)) form
must first create a set of labels, one for each of the Ivars. The procedure
unique-label can be used to create these labels. Once we have the labels,
we create the initial environment which maps the lvars to their corre-
sponding labels. The code for each lambda is emitted next followed by the
code for the body of the letrec.

(define (emit-letrec expr)
(let* ([bindings (letrec-bindings expr)]
[lvars (map lhs bindings)]
[lambdas (map rhs bindings)]
[labels (unique-labels lvars)]
[env (make-initial-env lvars labels)])
(for-each (emit-lambda env) lambdas labels)
(emit-scheme-entry (letrec-body expr) env)))

Handling a (lambda (var ...) (Expr)) form is tackled next. The
lambda form must bind its formal arguments to the appropriate locations
in which these formals arrive. We know that the return point will be located
at %esp, so the formals will be located at indices —4,—-8,—-12,.... Notice
that our environment now has two different kinds of bindings: integers
denoting stack locations and strings denoting letrec-bound labels.

(define (emit-lambda env)
(lambda (expr label)
(emit-function-header label)
(let ([fmls (lambda-formals expr)]
[body (lambda-body expr)])
(let £ ([fmls fmls] [si (- wordsize)] [env env])
(cond
[(empty? fmls) (emit-expr si env body)]
[else
(£f (rest fmls)
(- si wordsize)
(extend-env (first fmls) si env))1)))))

30 CHAPTER 1. BASIC CONCEPTS

Finally, we have to emit code for the (app lvar (Expr) ...) form. As
stated earlier, a app must first evaluate all of its arguments saving them at
the appropriate stack locations, then it must adjust the base pointer (%esp)
before issuing the call instruction, and finally, it should readjust the base
pointer to where it was before the call was issued.

(define (emit-app si env expr)
(define (emit-arguments si args)
(unless (empty? args)

(emit-expr si env (first args))

(emit-arguments (- si wordsize) (rest args))))
(emit-arguments (- si wordsize) (call-args expr))
(emit-adjust-base (+ si wordsize))
(emit-call si (lookup (call-target expr) env))
(emit-adjust-base (- (+ si wordsize))))

Exercises

1. Implement procedures in your compiler. Make sure you pass all the
tests in tests-1.7-req.scmas well as all previous tests.

2. The Intel-386 architecture is pretty esoteric in what it does in the call
and ret instructions. RISC architectures in particular do not provide
such instructions; instead, they provide a jmp-like instruction only.
How would you implement procedure calls and return using the jmp
instruction only? Implement your idea and test it.

1.8 Iteration via Proper Tail Calls 31

1.8 Iteration via Proper Tail Calls

The evaluation of procedures’ bodies so far followed a simple code gener-
ation strategy: code for the body expression was emitted first (to place the
result of the expression in the register %eax), followed by a call to the ret
instruction. Let’s inspect the the following program that sums all numbers
from 0 to 10:

(letrec ([sum (lambda (n ac)
(if (fxzero? n)
ac
(app sum (fxsubl n) (fx+ n ac))))])
(sum 10 0))

The code generated for the procedure sumlooks similar to the following
commented assembly code:

L_1:
movl -4(%esp), %eax /% load n */
cmpl $0, %eax /* compare it to 0 */
sete %al /* if zero, set %al to 1, else O */
movzbl %al, %eax /* %eax is either 1 or 0 */
sa $6, %al /* %eax is now #x4F or 0 */
or $0x2F, %al /* %eax is #x2F (#f) or #x6F (#t) */
cmp $0x2F, %al /* compare %eax to false */
je L_2 /* goto altern branch */
movl -8(%esp), %eax /* load ac ®/
jmp L_3 /* goto end %/

L_2:
movl -4(%esp), %eax /% load n */
addl $-4, %eax, /* subtract 1 */
movl %eax, -16(%esp) /% save at argl */
movl -4(%esp), %eax /* load n * /
addl -8(%esp), %eax /* add to ac */
movl %eax, -20(%esp) /* save at arg2 */
addl $-8, %esp /* adjust base pointer */
call L_1 /* call sum again */
addl $8, %esp /* readjust base pointer */

L_3:
ret /* return at end of procedure */

32 CHAPTER 1. BASIC CONCEPTS

The code generated consumes three cells of stack space at every recur-
sive call to the function sum. What’s more important is that after returning
from the call to sum, there is nothing more to be done other than return-
ing to the caller. Recognizing procedure calls whose value will only be
returned and treating them in a way that does not leak any space is called
Proper Tail Calls.

A procedure call is called a tail call if it occurs in a tail position. A tail
position in our language is defined recursively as follows:

The body of a procedure is in tail position.

If a 1et expression is in tail position, then the body of the let is in
tail position.

If the conditional expression (if test conseq altern) isin tail po-
sition, then the conseq and altern branches are also in tail position.

All other expressions are not in tail position.

We modify our compiler to recognize tail positions first. First, we add a
new procedure, emit-tail-expr, which is called at the initial tail position
(i.e. the body of a 1ambda form). The procedure emit-tail-expr is similar
to emit-expr, except that it calls the appropriate tail procedures:

(define (emit-tail-expr si env expr)
(cond
[(immediate? expr) (emit-tail-immediate expr)]
[(variable? expr) (emit-tail-variable-ref env expr)]

[(if? expr) (emit-tail-if si env expr)]
[(let? expr) (emit-tail-let si env expr)]
[(primcall? expr) (emit-tail-primcall si env expr)]
[(app? expr) (emit-tail-app si env expr)]

[else (error ---)]1))

Immediates, variable references, and primcalls in tail position are treated
similarly to their non-tail counterpart. The only difference is that a ret in-
struction must be emitted after emitting the code that evaluates the simple
expression.

1.8 Iteration via Proper Tail Calls 33

low address low address
free
stack
space
free
arg4 %esp-28
) g stack
outgoing arg3 esp-24 space
arguments arg2 %esp-20
argl %esp-16 arg4 %esp-16
local3 %esp-12 outgoing arg3 %esp-12
locals local2 %esp-8 arguments arg2 %esp-8
locall %esp-4 V argl %esp-4
base — | return point %esp base — | return point %esp
high address high address
(A) Before Tail Call (B) At Tail Call

Figure 1.10: One way of implementing proper tail calls is by collapsing
the tail frame. The figures show the placement of the arguments on the
stack above the local variables (A), then moving the arguments down to
overwrite the current frame immediately before making the tail jump (B).

The procedures emit-tail-if and emit-tail-let are also similar
emit-if and emit-let except that they call emit-tail-expr instead of
emit-expr for the expression subparts that are in tail position (i.e. the
body of a 1let and the two branches of an if).

For procedure calls in tail position, something special must be done.
Our simple strategy (illustrated in figure 1.10 above) works as follows:

e All arguments are evaluated in some order. The values of these
arguments are saved at some stack locations. This is similar to how
non-tail calls evaluated their arguments.

e Since the local variables are not needed after evaluating the argu-
ments, all the arguments are moved down to stack locations adjacent
to where the return-point is.

e Instead of emitting a call instruction, we emit a jmp instruction to
the target of the call. A jmp instruction does not modify the base
pointer, nor does it modify the return-point.

34 CHAPTER 1. BASIC CONCEPTS

Exercises

1. The tests in tests-1.8-req.scm are tail-call intensive. Verify that
running any of the tests on your previous compiler indeed exhausts
the stack space and consequently crashes the program. Implement
the basic algorithm for proper handling of tail calls. Test your com-
piler on the same test file. Note that some tests may take long time
to terminate.

2. Thebasic algorithm, although correct, isnaive and terribly inefficient.
Suggest simple ways in which the basic algorithm may be improved.
Look at the assembly output of some programs to get a feel for some
of the useless work that the basic algorithm performs.

1.9 Heap Allocation 35

1.9 Heap Allocation

Our simple compiler so far supported only the simplest data forms: the
immediates. We are now ready to add some data structures (pairs, vec-
tors, and strings) along with the primitives needed to construct these data
structures and access their data.

The first and simplest data structure to support is the pair. A pair
is a data structure that holds two values (the car and cdr fields®). The
primitive cons takes two arguments and constructs a new pair composed
of these two values. The primitives car/cdr take a pair and return the
value stored in the car/cdr field. The pair? predicate tests if its argument
is a pair; and like all predicates, it returns #t or #f depending on whether
the argument was a pair or not. Naturally, the pair data structures must
hold its two values along with a type tag that distinguishes it from the
immediates and the other data structures.

Several representations for pairs are possible. We choose a simple yet
efficient representation. Two words of memory are allocated for the pair to
hold its car and cdr fields. Remember that our fixnum and boolean values
were represented by integers whose lower bits served as a tag and higher
bits served as a content. We use a similar representation for pair pointers
by tagging the address of the allocated memory with a pair-tag.

For tagged-pointers to work on pairs, we need a reliable way of dividing
the 32-bit pointer into disjoint tag and address parts. This is possible
if we enforce some constraints on what constitutes a valid address. If
we only allow allocation on 8-byte boundaries, then the lower 3-bits of
all objects” addresses will be 000, and the higher 29-bits discriminate the
objects from one another. By oring the address of the object with a 3-bit
tag that distinguishes the type of the object, we obtain a tagged pointer
containing both the object’s type and its address in memory.

Eight unique tag combinations are possible with 3-bits of data. Three
of the eight combinations were already used for tagging fixnums (000, and
100;), and the other immediates (111;). We are left with five tags for our
nonimmediate objects.

We assign the tags as follows: 001, for pairs, 010 for closures (discussed
later in section ??), 011, for symbols (discussed in section ??), 101, for
vectors, and 110, for strings.

3The names are stuck for historical reasons

36 CHAPTER 1. BASIC CONCEPTS

low address low address
used
space
\ used
ap —> fieldl %ebp space
field2 %ebp+4
field3 %ebp+8
free
heap ap —> %ebp
space . %ebp+4
free . webosg
heap o
space
high address high address
(A) Before allocation (B) After allocation

Figure 1.11: Illustration of the heap. The allocation pointer is is held in
the %ebp register and its value is always aligned on 8-byte boundaries.
Individual objects are allocated at address %ebp and the allocation pointer
is bumped to the first boundary after the object.

A pointer to heap-space from which we allocate our objects is held in a
dedicated register, %ebp. Allocation is performed by bumping the value of
%ebp by the size of the object. If the size of the object is not a multiple of 8,
then we bump %ebp to the next address that is a multiple of 8.

Pairs require 8-bytes of memory to hold its car and cdr fields. There-
fore, code generated for cons should, after evaluating its arguments, copy
the value of the first argument to car-offset (%ebp), copy the value of the
second argument to cdr-offset (%ebp), compute the pointer to the pair (by
oring the pair-tag with the value of %ebp), then bump the value of %ebp
by size-pair. Notice that the value of %ebp remains a multiple of 8 after
allocating a pair since the size of the pair is 8.

The predicate pair? is implemented the same way as the predicates
fixnum? and boolean?. The argument is masked with 111, and the result
is compared to the pair-tag.

The primitives car and cdr each takes a pair as an argument, so, the
value of the argument would already be tagged, or displaced by theamount

1.9 Heap Allocation 37

of pair-tag. The fields themselves are located at car-offset and cdr-offset from
the address of the pair. Subtracting the tag from the offset yields the address
of the field from the value of the pointer. For example, if the car/cdr fields
are located at offsets 0 and 4, and the tag of the pair is 1, then the code for
extracting the car field is:

movl -1(%eax), %eax
and the code for extracting the cdr field is:
movl 3(%eax), %eax

assuming the argument is received in %eax and the value of the primitive
call is placed in %eax.

Creating the heap and saving the C registers

Creating a heap space is no different from creating a stack. The procedure
allocate_protected_space shown in figure 1.8, p. 23 can be used to
allocate a large block of memory to serve as our heap.

We slightly modify our strategy for saving the contents of the Cregisters.
Previously, we saved the value of the %esp register in the scratch register
%ecx. As we use more registers in our compiler (like %ebp), we need to
free more of the C register. At this point, it's better to implement a full
context-switching mechanism to save and restore all of the C register.

Themain procedure (shownin figure 1.12, p. 39) creates a context struct
and passes a pointer to it to the scheme_entry along with the stack/heap
pointers. The context struct has eight fields to hold the values of the eight
machine registers.

Each register name is commented with a scratch/preserve marker to as
defined by the Application Binary Interface which is adopted by the UNIX-
based operating systems on the Intel-386 architecture. Scratch register
are those registers that the callee (scheme_entry) can freely modify while
preserve registers are those whose value must be preserved.

On entry to schem_entry, the context is loaded in the %ecx register
and all the values that must be preserved are stored. Next, the allocation
pointer is loaded into %ebp and the stack pointer is loaded into %esp before
control is transferred to L_scheme_entry. The contents of the registers
are restored before returning to main. See figure 1.13, p. 39 for a detailed
assembly sequence.

38 CHAPTER 1. BASIC CONCEPTS

Exercises

1. Complete the support for pairs in your compiler and the C runtime
system. Test your implementation using tests-1.9-cons.scm.

2. In addition to pairs, many languages provide means of allocating
blocks of memory (often called vectors, arrays, etc.). Scheme’s vectors
can be created by calling make-vector. The primitive make-vector
takes two arguments: a number indicating the size of the vector, and
a value used to fill the elements of the vector. For example, calling
(make-vector 4 #t) returns #(#t #t #t #t). A vector of length N
is represented by a block of memory of size (4N + 4) bytes to store
the vector length in addition to the vector elements. In addition to
the primitive make-vector, the primitives vector?, vector-length,
vector-ref, and vector-set! areneeded to inspect and manipulate
vectors. Add support for the vector primitives to your compiler
and runtime and test it using tests-1.9-vectors.scm. (Hint: Pay
proper attention to keeping the allocation-pointer aligned at at 8-byte
boundaries.)

3. Strings are in many ways similar to vectors. The only difference is is
that strings contain characters only as content. This difference allows
us to represent strings more compactly in memory: a string of size
N requires (N + 4) bytes of memory to store its length and content.
Implement the primitives make-string, string?, string-length,
string-ref, and string-set!. Test your implementation using
tests-1.9-strings.scm. (Hint: Use gcc to figure out the assem-
bly instructions for storing and loading a single byte from a string.)

1.9 Heap Allocation

39

typedef struct {
void*
void*
void*
void*
void*
void*
void*
void*

} cont

int main(int argc, char®

eax;
ebx;
ecx;
edx;
esi;
edi;
ebp;
esp;
ext;

/* 0
/* 4
/% 8
/% 12
/* 16
/% 20
/% 24
/% 28

scratch

preserve *

scratch
scratch
preserve

preserve *
preserve *
preserve *

g

w

argv){

--- allocate heap/stack

cont

ext ctxt;

sk

sk

NN

print_ptr(scheme_entry(&ctxt, stack_base, heap));
--- deallocate heap/stack
return 0;

Figure 1.12: A runtime.c creates a context struct to be used by the
scheme_entry procedure to save the callee-save registers.

0.
1
2
3.
4.
5
6
7

scheme_entry:
4 (%esp), %ecx
%ebx, 4(%ecx)

movl
movl
movl %esi,
movl
movl
movl

16 (%ecx)

%edi, 20(%ecx)
%ebp, 24(%ecx)
%esp, 28(%ecx)

movl 12(%esp), %ebp

10.
11.
12.
13.
14.
15.

movl
call
movl
mov1l
mov1l
mov1l
movl
ret

8(%esp), %esp

L_scheme_entry
4(%ecx), %ebx

16 (%ecx), %esi
20 (%ecx), %edi
24 (%ecx), %ebp
28(%ecx), %esp

Figure 1.13: Saving and restoring the context around L_scheme_entry.

40

CHAPTER 1. BASIC CONCEPTS

Appendix A
Tables

41

42 APPENDIX A. TABLES

A.1 ASCII Table

0 #x0 #\nul | 32 #x20 #\sp | 64 #x40 #\@ | 96 #x60 #\°
1 #x1 #\soh | 33 #x21 #\! 65 #x41 #\A 97 #x61 #\a
2 #x2 #\stx | 34 #x22 #\" 66 #x42 #\B 98 #x62 #\b
3 #x3 #\etx | 35 #x23 #\# 67 #x43 #\C 99 #x63 #\c
4 #x4 #\eot | 36 #x24 #\$ | 68 #x44 #\D | 100 #x64 #\d
5 #x5 #\enq | 37 #x25 #\% 69 #x45 #\E | 101 #x65 #\e
6 #x6 #\ack | 38 #x26 #\& |70 #x46 #\F | 102 #x66 #\f
7 #x7 #\bel | 39 #x27 #\’ 71 #x47 #\G | 103 #x67 #\g
8 #x8 #\bs 40 #x28 #\(72 #x48 #\H | 104 #x68 #\h
9 #x9 #\tab | 41 #x29 #\) 73 #x49 #\I | 105 #x69 #\i
10 #xA #\1f 42 #x2A #* 74 #x4A #\] | 106 #x6A #\j
11 #xB #\vt 43 #x2B #\+ 75 #x4B #\K | 107 #x6B #\k
12 #xC #\ff 44 #x2C #\, 76 #x4C #\L | 108 #x6C #\1
13 #xD #\cr 45 #x2D #\- 77 #x4D #\M | 109 #x6D #\m
14 #XE #\so 46 #x2E #\. 78 #x4E #\N | 110 #x6E #\n
15 #xF #\si | 47 #x2F #\/ |79 #x4F #\0 | 111 #x6F #\o
16 #x10 #\dle | 48 #x30 #\0 80 #x50 #\P | 112 #x70 #\p
17 #x11 #\dcl | 49 #x31 #\1 81 #x51 #\Q | 113 #x71 #\q
18 #x12 #\dc2 | 50 #x32 #\2 82 #x52 #\R | 114 #x72 #\r
19 #x13 #\dc3 | 51 #x33 #\3 | 83 #x53 #\S | 115 #x73 #\s
20 #x14 #\dcd | 52 #x34 #\4 84 #x54 #\T | 116 #x74 #\t
21 #x15 #\nak | 53 #x35 #\5 85 #x55 #\U | 117 #x75 #\u
22 #x16 #\syn | 54 #x36 #\6 86 #x56 #\V | 118 #x76 #\v
23 #x17 #\etb | 55 #x37 #\7 87 #x57 #\W | 119 #x77 #\w
24 #x18 #\can | 56 #x38 #\8 88 #x58 #\X | 120 #x78 #\x
25 #x19 #\em 57 #x39 #\9 89 #x59 #\Y | 121 #x79 #\y
26 #x1A #\sub | 58 #x3A #\: 90 #x5A #\Z | 122 #x7A #\z
27 #x1B #\esc | B9 #x3B #\; 91 #x5B #\[| 123 #x7B #\{
28 #x1C #\fs 60 #x3C #\< 92 #x5C #\\ | 124 #x7C #\|
29 #x1D #\gs 61 #x3D #\= 93 #x5D #\] | 125 #x7D #\}
30 #x1E #\rs 62 #x3E #\> 94 #x5E #\A | 126 #xX7E #\~
31 #x1F #\us 63 #x3F #\7? 95 #x5F #_ | 127 #x7F #\del

Figure A.1: ASCII Table. Due to typographical problems, some charac-
ters may not be very legible. Such characters include 39 (single-quote or
apostrophe), 44 (comma), 46 (period), and 96 (back-quote).

A.2 Object Tags

A.2 Object Tags

Fixnum: 30-bit fixnum | 00
Pair: 29-bit address | 001
Closure: 29-bit address | 910
Symbol: 29-bit address | 011
Vector/Record: 29-bit address | 101
String/Tagged-Object: | 29-bit address | 110
Other Immediate: 29-bit content | 111

Figure A.2: Primary Pointer Tags.

ASCII chars: | 16 X 0 | 8-bit content | 0000 | 1111
#1: 24x0 | 0010 | 1111
#t: 24x0 | 0011 | 1111
O: 24x0 | 0100 | 1111
#!eof: 24 x 0| 0101 | 1111
#!void: 24 x 0| 0110 | 1111
#!unbound: 24 x 0| 0111 | 1111

Figure A.3: Immediates Objects

#!code: 24 X0 | 0000 | 0111
#!stack: 24 X0 | 0001 | 0111
#!symbol-table: |24 x0 | 0010 | 0111
#!hash-table: 24 x 0 | 0011 | 0111

#lexact-bignum: |24 x 0 | 1000 | 0111
#lexact-ratnum: |24 X0 | 1001 | 0111
#lexact-rectnum: | 24 X0 | 1010 | 0111
#!inexact: 24 x0 | 1100 | 0111

Figure A.4: Extended Object Tags

	Preface
	Basic Concepts
	 Integers
	 Immediate Constants
	 Unary Primitives
	 Conditional Expressions
	 Binary Primitives
	 Local Variables
	 Procedures
	 Iteration via Proper Tail Calls
	 Heap Allocation

	Tables
	ASCII Table
	Object Tags

