-
Notifications
You must be signed in to change notification settings - Fork 0
/
viz.py
65 lines (57 loc) · 1.91 KB
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
import torch.onnx
from visualdl import LogWriter
class TinyVGG(nn.Module):
def __init__(self, input_shape: int, hidden_units: int, output_shape: int) -> None:
super().__init__()
self.conv_block_1 = nn.Sequential(
nn.Conv2d(
in_channels=input_shape,
out_channels=hidden_units,
kernel_size=3,
stride=1,
padding=1,
),
nn.BatchNorm2d(hidden_units), # Add BatchNorm here
nn.ReLU(),
nn.Conv2d(
in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1,
padding=1,
),
nn.BatchNorm2d(hidden_units), # Add BatchNorm here
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.conv_block_2 = nn.Sequential(
nn.Conv2d(hidden_units, hidden_units, kernel_size=3, padding=1),
nn.BatchNorm2d(hidden_units), # Add BatchNorm here
nn.ReLU(),
nn.Conv2d(
hidden_units, out_channels=hidden_units, kernel_size=3, padding=1
),
nn.BatchNorm2d(hidden_units), # Add BatchNorm here
nn.ReLU(),
nn.MaxPool2d(2),
)
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=hidden_units * 16 * 16, out_features=output_shape),
)
def forward(self, x: torch.Tensor):
x = self.conv_block_1(x)
x = self.conv_block_2(x)
x = self.classifier(x)
return x
logdir = "./log"
writer = LogWriter(logdir)
# Initialize the model
model = TinyVGG(input_shape=3, hidden_units=10, output_shape=5)
# Create a dummy input
dummy_input = torch.randn(1, 3, 64, 64)
# Log the model
writer.add_graph(model, dummy_input)
writer.close()