forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Context.h
252 lines (225 loc) · 7.37 KB
/
Context.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#pragma once
#include <ATen/core/ATenGeneral.h>
#include <ATen/Tensor.h>
#include <ATen/Utils.h>
#include <ATen/core/ATenGeneral.h>
#include <ATen/core/Generator.h>
#include <ATen/CPUGeneratorImpl.h>
#include <ATen/core/LegacyTypeDispatch.h>
#include <ATen/detail/CUDAHooksInterface.h>
#include <ATen/detail/HIPHooksInterface.h>
#include <c10/util/Exception.h>
#include <c10/core/impl/DeviceGuardImplInterface.h>
#include <c10/core/QEngine.h>
#include <memory>
#include <mutex>
#include <cstdint>
namespace at {
class Tensor;
class CAFFE2_API Context {
public:
Context();
const Generator& defaultGenerator(Device device) {
DeviceType device_type = device.type();
initCUDAIfNeeded(device_type);
initHIPIfNeeded(device_type);
if (device_type == at::kCPU) {
return at::detail::getDefaultCPUGenerator();
} else if (device_type == at::kCUDA) {
return at::detail::getCUDAHooks().getDefaultCUDAGenerator(device.index());
} else {
AT_ERROR(DeviceTypeName(device_type), " device type not enabled.");
}
}
Device getDeviceFromPtr(void* data, DeviceType device_type) {
initCUDAIfNeeded(device_type);
initHIPIfNeeded(device_type);
if (device_type == at::kCPU) {
return DeviceType::CPU;
} else if (device_type == at::kCUDA) {
return at::detail::getCUDAHooks().getDeviceFromPtr(data);
} else {
AT_ERROR(DeviceTypeName(device_type), " device type not enabled.");
}
}
bool isPinnedPtr(void* data) {
return detail::getCUDAHooks().isPinnedPtr(data);
}
bool hasOpenMP() const;
bool hasMKL() const;
bool hasLAPACK() const;
bool hasMKLDNN() const;
bool hasMAGMA() const {
return detail::getCUDAHooks().hasMAGMA();
}
bool hasCUDA() const {
return detail::getCUDAHooks().hasCUDA();
}
bool hasHIP() const {
return detail::getHIPHooks().hasHIP();
}
bool hasXLA() const {
return c10::impl::hasDeviceGuardImpl(at::DeviceType::XLA);
}
// defined in header so that getNonVariableType has ability to inline
// call_once check. getNonVariableType is called fairly frequently
THCState* lazyInitCUDA() {
std::call_once(thc_init,[&] {
thc_state = detail::getCUDAHooks().initCUDA();
});
return thc_state.get();
}
THHState* lazyInitHIP() {
std::call_once(thh_init,[&] {
thh_state = detail::getHIPHooks().initHIP();
});
return thh_state.get();
}
const at::cuda::NVRTC& getNVRTC() {
return detail::getCUDAHooks().nvrtc();
}
THCState* getTHCState() {
// AT_ASSERT(thc_state);
return thc_state.get();
}
THHState* getTHHState() {
return thh_state.get();
}
bool setFlushDenormal(bool on);
// NB: This method is *purely* whether or not a user requested
// that CuDNN was enabled, it doesn't actually say anything about
// whether or not CuDNN is actually usable. Use cudnn_is_acceptable
// to test this instead
bool userEnabledCuDNN() const;
void setUserEnabledCuDNN(bool e);
bool userEnabledMkldnn() const;
void setUserEnabledMkldnn(bool e);
bool benchmarkCuDNN() const;
void setBenchmarkCuDNN(bool);
bool deterministicCuDNN() const;
void setDeterministicCuDNN(bool);
bool deterministic() const;
void setDeterministic(bool);
void alertNotDeterministic(c10::string_view const& caller);
at::QEngine qEngine() const;
void setQEngine(at::QEngine e);
const std::vector<at::QEngine>& supportedQEngines() const;
bool isXNNPACKAvailable() const;
// This method is used to release the original weight after pre-packing.
// It should be called once before loading/running the model.
// NB: By default it is set to true for mobile builds.
void setReleaseWeightsWhenPrepacking(bool e);
bool releaseWeightsWhenPrepacking() const;
private:
void initCUDAIfNeeded(DeviceType p) {
if (p == DeviceType::CUDA) {
lazyInitCUDA();
}
}
void initHIPIfNeeded(DeviceType p) {
if (p == DeviceType::HIP) {
lazyInitHIP();
}
}
std::once_flag thc_init;
std::once_flag thh_init;
bool enabled_cudnn = true;
bool deterministic_cudnn = false;
bool _deterministic = false;
bool benchmark_cudnn = false;
bool enabled_mkldnn = true;
#ifdef C10_MOBILE
bool release_original_weights = true;
#else
bool release_original_weights = false;
#endif
c10::optional<at::QEngine> quantized_engine = c10::nullopt;
std::unique_ptr<THCState, void(*)(THCState*)> thc_state;
std::unique_ptr<THHState, void(*)(THHState*)> thh_state;
};
CAFFE2_API Context& globalContext();
static inline void init() {
globalContext();
}
CAFFE2_API Allocator* getCPUAllocator();
static inline DeprecatedTypeProperties& getDeprecatedTypeProperties(Backend p, ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
p, s);
}
static inline DeprecatedTypeProperties& CPU(ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
Backend::CPU, s);
}
static inline DeprecatedTypeProperties& CUDA(ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
Backend::CUDA, s);
}
static inline DeprecatedTypeProperties& HIP(ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
Backend::HIP, s);
}
static inline bool hasCUDA() {
return globalContext().hasCUDA();
}
static inline bool hasHIP() {
return globalContext().hasHIP();
}
static inline bool hasXLA() {
return globalContext().hasXLA();
}
// Despite its name, this function returns the number of *CUDA* GPUs.
static inline size_t getNumGPUs() {
// WARNING: DO NOT ADD LOGIC TO HANDLE OTHER DEVICE TYPES TO THIS
// FUNCTION. If you are interested in interrogating the number of
// devices for a specific device type, add that function to the
// relevant library (e.g., similar to at::cuda::device_count())
if (hasCUDA() && hasHIP()) {
throw std::runtime_error(
"Enabling both CUDA and HIP in ATen is not supported, as HIP masquerades "
"to be CUDA (e.g., when you say CUDA, on a HIP build of ATen, this actually "
"means HIP. Rebuild PyTorch with one or the other disabled.");
} else if (hasCUDA()) {
return detail::getCUDAHooks().getNumGPUs();
} else if (hasHIP()) {
return detail::getHIPHooks().getNumGPUs();
} else {
return 0;
}
}
static inline bool hasOpenMP() {
return globalContext().hasOpenMP();
}
static inline bool hasMKL() {
return globalContext().hasMKL();
}
static inline bool hasLAPACK() {
return globalContext().hasLAPACK();
}
static inline bool hasMAGMA() {
return globalContext().hasMAGMA();
}
static inline bool hasMKLDNN() {
return globalContext().hasMKLDNN();
}
static inline void manual_seed(uint64_t seed) {
auto gen = globalContext().defaultGenerator(DeviceType::CPU);
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen.mutex());
gen.set_current_seed(seed);
}
// NB: Sometimes we build with CUDA, but we don't have any GPUs
// available. In that case, we must not seed CUDA; it will fail!
int num_gpus = detail::getCUDAHooks().getNumGPUs();
if (hasCUDA() && num_gpus > 0) {
for (int i = 0; i < num_gpus; i++) {
auto cuda_gen = globalContext().defaultGenerator(Device(at::kCUDA, i));
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(cuda_gen.mutex());
cuda_gen.set_current_seed(seed);
}
}
}
}
} // namespace at